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A major challenge in flow through porous media is to better understand the link between
microstructure and macroscale flow and transport. For idealised microstructures, the
mathematical framework of homogenisation theory can be used for this purpose. Here,
we consider a two-dimensional microstructure comprising an array of obstacles of smooth
but arbitrary shape, the size and spacing of which can vary along the length of the porous
medium. We use homogenisation via the method of multiple scales to systematically
upscale a novel problem involving cells of varying area to obtain effective continuum
equations for macroscale flow and transport. The equations are characterised by the
local porosity, a local anisotropic flow permeability, an effective local anisotropic solute
diffusivity and an effective local adsorption rate. These macroscale properties depend
non-trivially on the two degrees of microstructural geometric freedom in our problem:
obstacle size and obstacle spacing. We exploit this dependence to construct and compare
scenarios where the same porosity profile results from different combinations of obstacle
size and spacing. We focus on a simple example geometry comprising circular obstacles
on a rectangular lattice, for which we numerically determine the macroscale permeability
and effective diffusivity. We investigate scenarios where the porosity is spatially uniform
but the permeability and diffusivity are not. Our results may be useful in the design of
filters or for studying the impact of deformation on transport in soft porous media.
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1. Introduction

Fluid flow and solute transport in porous media occur in a wide variety of situations,
including contaminant transport (Brusseau 1994; Quintard & Whitaker 1994), lithium-ion
batteries (Li et al. 2018), hydrogeological systems (Domenico & Schwartz 1990), biofilms
(Davit et al. 2013b), bones (Fritton & Weinbaum 2009) and soils (Daly & Roose 2015).
Many of these porous media, including soils, rocks and biological tissues, are intrinsically
heterogeneous and/or anisotropic at the pore scale, and macroscopic flow and transport in
these systems are known to depend critically on pore structure and pore-scale fluid–solid
interactions. For example, complex flow patterns and the resulting solute transport are
believed to be crucial to the ecohydrology of peatlands, and have been attributed to the
pore-scale heterogeneity and anisotropy of peat soil (Beckwith, Baird & Heathwaite 2003;
Wang et al. 2020). Clavaud et al. (2008) used imaging to study the relationship between
pore geometry and permeability anisotropy in sandstone, limestone and volcanic rocks,
finding that macroscopic flow properties depend on the details of the pore structure across
these different rock types. O’Dea et al. (2015) used modelling in the context of tissue
engineering to show that microstructure induces anisotropy in flow properties, highlighting
the role of microstructure in determining flow patterns and nutrient delivery. Changes
in pore structure can also lead to large deviations from macroscopic models derived for
homogeneous microstructures; for example, Rosti et al. (2020) found that microstructural
changes due to deformation of the solid skeleton can lead to a breakdown of Darcy’s law.
Ultimately, many aspects of the impacts of pore structure on macroscale flow and transport
behaviour remain poorly understood. We focus here on the specific roles of pore-scale
heterogeneity and anisotropy in the context of a simple, two-dimensional model problem.

Porous media are characterised by at least two distinct length scales: the characteristic
length of each pore/solid grain (the pore scale) and the characteristic length of the porous
medium itself (the macroscale) (Tomin & Lunati 2016). Studying the impact of the pore
structure on flow, transport and sorption via direct numerical simulation (DNS) in a
complex geometry is computationally expensive, and can be prohibitively so when the
pore-scale and macroscale lengths differ by orders of magnitude. For example, Olivieri
et al. (2020) used DNS to study turbulent flow through a cube containing randomly
distributed solid fibres, considering up to 1000 fibres of length 1/2 in a cube of side
length 2π. Similarly, Kuwata & Suga (2017) used DNS to study turbulent flow through
a channel with a porous bed; the bed was four pores thick, with a square-frame structure.
For a large number of obstacles or pores, as would be relevant to practical applications,
one way to deal with these disparate length scales is to systematically derive an upscaled
macroscale model that is uniformly valid on the entire porous medium, and that contains
pertinent pore-scale information via the permeability, effective diffusivity and an effective
source/sink term.

There are many common methods for upscaling, including the method of moments,
renormalisation group theory and homogenisation via volume averaging or the method
of multiple scales (MMS) (Salles et al. 1993; Hornung 1996; Wood et al. 2003; Mei
& Vernescu 2010; Bensoussan, Lions & Papanicolaou 2011). These different methods
have been compared with each other and with DNS (e.g. Salles et al. 1993; Davit et al.
2013a; Kuwata & Suga 2017). The two homogenisation methods, in particular, lead to
the same macroscale equations via different routes. In essence, both methods identify
the governing equations on the pore scale, which are subject to closure conditions,
and use this pore-scale problem to derive a system of equations over the macroscale.
The formal nature of the MMS enables the determination of higher-order corrections
to the leading-order macroscale equations. In contrast, volume averaging can be more
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A homogenised model for a heterogeneous porous medium

physically intuitive (e.g. Whitaker 1986, 2013; Wood et al. 2003; Davit et al. 2013a)
but it is more difficult to determine higher-order corrections and thereby quantify
errors.

Classic homogenisation requires the microstructure to be strictly periodic at some scale.
This requires a ‘periodic cell’ for the MMS (Mauri 1991; Salles et al. 1993; Chapman,
Shipley & Jawad 2008; Shipley & Chapman 2010) and a ‘representative elementary
volume’ for volume averaging (Auriault 1991; Davit et al. 2013a). However, recent
work has extended the former technique to allow for slowly varying microstructure (i.e.
microstructure that is only locally periodic) (e.g. van Noorden 2009; van Noorden &
Muntean 2011; Richardson & Chapman 2011; Valdés-Parada & Alvarez-Ramírez 2011;
Ray et al. 2012; Muntean & Nikolopoulos 2020; Bruna & Chapman 2015; Dalwadi,
Griffiths & Bruna 2015; Dalwadi, Bruna & Griffiths 2016). Dalwadi et al. (2015), in
particular, considered diffusive and advective transport through an array of impermeable
obstacles to which solute can adhere, allowing for slow variation of obstacle size while
requiring uniform cell size.

Here, we study the impact of slowly varying pore structure on macroscopic flow,
transport and sorption within a porous medium. Specifically, we consider steady flow
through a heterogeneous, two-dimensional porous material comprising an array of solid
obstacles. We allow for slow but arbitrary longitudinal variations in the size of obstacles,
as in Dalwadi et al. (2015, 2016), and also in their spacing. We begin by developing
a general model for homogenised flow and transport for arbitrary obstacle shape, size
and spacing. We then develop detailed results for the simple case of circular obstacles. A
key novelty of this approach is that allowing for two degrees of microstructural freedom
affords a rich parameter space for exploration, including, for example, the ability to have
a heterogeneous microstructure while maintaining uniform porosity, and allowing for a
specific study of anisotropy. Mathematically, varying the longitudinal spacing requires
dealing with a varying cell size in the homogenisation procedure. Doing so is non-trivial,
and adds a frequency modulation to the problem in addition to the typical amplitude
modulation associated with homogenisation via the MMS (Chapman & McBurnie
2011).

For the flow, we assume steady Stokes flow with no-slip and no-penetration conditions
on the solid surfaces. For solute transport, we consider transient advection and diffusion
with removal via adsorption on the solid surfaces (§ 2). Following Chapman & McBurnie
(2011), Richardson & Chapman (2011), Bruna & Chapman (2015), Dalwadi et al. (2015)
and Dalwadi et al. (2016), we exploit the local periodicity of the pore geometry to
homogenise the pore-scale problem via the MMS (§ 3). Since we consider a microstructure
in which both the size and the spacing of the solid obstacles vary slowly along the
length of the porous material, the total area of each cell also varies slowly. The
homogenisation method provides effective macroscopic equations for fluid flow, solute
transport and sorption that are uniformly valid throughout the heterogeneous porous
medium. For any particular microstructural geometry, the permeability and effective
diffusivity tensors we derive must be determined numerically. In this manuscript, we
demonstrate the general approach by calculating these tensors for a specific filter
geometry comprising an array of circular obstacles arranged on a rectangular lattice.
These tensors are strongly anisotropic, highlighting the fact that porosity alone is an
insufficient measure of pore structure (§ 4). We use the homogenised model to investigate
the effects of heterogeneous pore structure in a simple one-dimensional steady-state
filtration problem (§ 4.2). Finally, we discuss the merits and limitations of the model
(§ 5).

932 A34-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

93
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

od
le

ia
n 

Li
br

ar
ie

s 
of

 th
e 

U
ni

ve
rs

ity
 o

f O
xf

or
d,

 o
n 

10
 D

ec
 2

02
1 

at
 1

0:
03

:0
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.938
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


L.C. Auton, S. Pramanik, M.P. Dalwadi, C.W. MacMinn and I.M. Griffiths

Flow

L̃

x̃2 A(x̃1)h̃

x̃1

h̃

Figure 1. We consider the flow of fluid carrying solute through a heterogeneous porous material in two
dimensions. The porous medium has length L̃ and comprises an array of obstacles. The size of these
obstacles depends only on a scale factor Λ(x̃1), located within each rectangular cell of transverse height
h̃ and longitudinal width A(x̃1)h̃. The porous medium is thus uniform in the transverse (x̃2) direction but
heterogeneous in the longitudinal (x̃1) direction. We assume that the spacing between obstacles is small relative
to the length of the porous medium: ε := h̃/L̃ � 1. The cell highlighted in orange is shown in detail in figure 2.

2. Model problem

We consider the steady flow of fluid carrying a passive solute through a rigid porous
medium in two dimensions. The solute advects, diffuses and is removed via adsorption
to the solid structure. The spatial coordinate is x̃ := x̃1e1 + x̃2e2, with x̃1 and x̃2 the
dimensional longitudinal and transverse coordinates, respectively, and e1 and e2 the
longitudinal and transverse unit vectors, respectively. The fluid enters the porous medium
uniformly through the inlet at the left (x̃1 = 0) and exits the porous medium through the
outlet at the right (x̃1 = L̃) (figure 1). We denote dimensional quantities with a tilde.

The entire domain of the porous medium, denoted Ω̃ , comprises both the fluid and the
solid structure. The latter constitutes an array of solid obstacles, as discussed in more
detail below. We assume that the solute particles are small relative to the solid obstacles,
and we measure the local density of solute (amount of solute per volume of fluid) via the
concentration field c̃(x̃, t̃), where t̃ is dimensional time. This concentration field is defined
within the fluid phase of the porous medium, denoted Ω̃f .

Note that we do not track solute once it has adsorbed to the solid surface, and we neglect
any impact of this adsorption on the size of the obstacles. The latter point is justified by
our assumption that the solute particles are negligible in size relative to the obstacles, and
also because we are interested in macroscopic advective time scales, which are typically
far shorter than those of solute accumulation and blocking.

The porous medium can be partitioned into an array of rectangular cells of fixed height
h̃ and varying width A(x̃1)h̃, where A is the dimensionless aspect ratio. Each cell contains
fixed and rigid obstacles of smooth but arbitrary shape. The shape of each obstacle is fixed
but the surface area of each obstacle varies with x̃1. We define a scale factor Λ(x̃1), which
controls the variation in surface area of the obstacles over the porous material. Between
adjacent cells the only allowed variation in the obstacles’ surface area is isotropic growth
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A homogenised model for a heterogeneous porous medium

centred about each obstacle’s respective centre of mass. The solid domain is the union of
these obstacles, and is denoted Ω̃s := Ω̃ \ Ω̃f . This construction leads to a porous medium
whose properties vary in the longitudinal direction but not in the transverse direction (see
figure 1). We further assume that the porous medium is composed of a large number of
obstacles in the longitudinal direction, which requires ε := h̃/L̃ � 1 with A = O(1).

We assume that the fluid is incompressible and Newtonian, and that the flow is steady
and dominated by viscosity. As such, the fluid velocity ṽ(x̃) and pressure p̃(x̃) satisfy the
Stokes equations, subject to no-slip and no-penetration boundary conditions on the solid
obstacles,

−∇̃p̃ + μ̃∇̃2ṽ = 0, x̃ ∈ Ω̃f , (2.1a)

∇̃ · ṽ = 0, x̃ ∈ Ω̃f , (2.1b)

ṽ = 0, x̃ ∈ ∂Ω̃s, (2.1c)

where μ̃ is the dynamic viscosity of the fluid, ∂Ω̃s denotes the fluid–solid interface and ∇̃
is the gradient operator with respect to x̃.

We model solute transport and adsorption via the standard advection–diffusion equation
with a linear, partially adsorbing condition at the fluid–solid interface

∂ c̃
∂ t̃

= ∇̃ ·
(
D̃∇̃c̃ − ṽc̃

)
, x̃ ∈ Ω̃f , (2.2a)

−γ̃ c̃ = ñs ·
(
D̃∇̃c̃ − ṽc̃

)
, x̃ ∈ ∂Ω̃s, (2.2b)

where D̃ is the coefficient of molecular diffusion, ñs is the outward-facing unit normal to
∂Ω̃s and γ̃ ≥ 0 is the constant adsorption coefficient. Note that the second term on the
right-hand side of (2.2b) vanishes due to (2.1c). Further, note that γ̃ = 0 corresponds to
no adsorption and γ̃ → ∞ corresponds to instantaneous adsorption, where the latter is
equivalent to imposing c̃ = 0 on ∂Ω̃s.

We define a function f̃s(x̃) that vanishes on the fluid–solid interface,

f̃s(x̃) = 0 on ∂Ω̃s, (2.3)

where we take f̃s(x̃) > 0 inside the solid phase. Then,

ñs(x̃) := ∇̃f̃s∣∣∣∇̃f̃s
∣∣∣ (2.4)

is the outward-facing normal to the fluid domain.
We make (2.1)–(2.2) dimensionless via the scalings

x̃ = L̃x̂, ṽ = Ṽ v̂, p̃ =
(

μ̃Ṽ
ε2L̃

)
p̂, c̃ = C̃ĉ, and t̃ =

(
L̃2

D̃

)
t, (2.5a–e)

where Ṽ and C̃ are typical inlet velocities and concentrations, respectively; x̂ and t
denote the dimensionless spatial and temporal coordinates, respectively; and v̂ = v̂(x̂),
p̂ = p̂(x̂) and ĉ = ĉ(x̂, t) denote the dimensionless velocity, pressure and concentrations
fields, respectively. This pressure scale balances the macroscopic pressure gradient against
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viscous dissipation at the pore scale, as is standard in lubrication problems. Employing the
scalings in (2.5a–e), the flow problem (2.1) becomes

−∇̂p̂ + ε2∇̂2v̂ = 0, x̂ ∈ Ω̂f , (2.6a)

∇̂ · v̂ = 0, x̂ ∈ Ω̂f , (2.6b)

v̂ = 0, x̂ ∈ ∂Ω̂s, (2.6c)

where ∇̂ is the gradient operator with respect to x̂. Similarly, the transport problem (2.2)
becomes

∂ ĉ
∂t

= ∇̂ ·
(
∇̂ĉ − Pe v̂ĉ

)
, x̂ ∈ Ω̂f , (2.7a)

−εγ ĉ = n̂s ·
(
∇̂ĉ − Pe v̂ĉ

)
, x̂ ∈ ∂Ω̂s, (2.7b)

where n̂s(x̂), a function of x̂, is the outward-facing normal to Ω̂f , the Péclet number
Pe := L̃Ṽ/D̃ measures the rate of advective transport relative to that of diffusive transport
and the dimensionless adsorption rate γ := γ̃ L̃/(εD̃) measures the rate of adsorption
relative to that of diffusive transport. Note that γ ≡ Da/ε, where Da = γ̃ /Ṽ is the
Damköhler number of the second kind. As discussed in more detail below, the subsequent
analysis requires that Pe, γ = O(1) are constants independent of ε, which represents a
distinguished limit as highlighted below.

Finally, the dimensionless fluid–solid interface becomes f̂s(x̂) = 0 and (2.4) becomes

n̂s(x̂) := ∇̂f̂s∣∣∣∇̂f̂s
∣∣∣ . (2.8)

3. Homogenisation

Here, we approach the problem above with homogenisation via the MMS. Classically,
homogenisation via the MMS is an asymptotic technique for domains that can be
represented as the union of a large number of strictly periodic cells (Chapman et al.
2008). Here we use an extension of the method to deal with materials with a locally
periodic microstructure that can vary over the macroscale (Chapman & McBurnie 2011;
Richardson & Chapman 2011; Bruna & Chapman 2015; Dalwadi et al. 2015). The
specific problem of circular obstacles that vary slowly in size across the length of
a filter was considered in Dalwadi et al. (2015, 2016), constituting a one-parameter
variation in microstructure with the periodic cell size constant. We generalise this
approach to allow for arbitrary obstacle shape and to include an additional degree
of microstructural freedom in the spacing between obstacles. The latter extension
allows us to explore porous media with novel properties such as a spatially varying
microstructure but a spatially uniform porosity. In order to consider varying cell sizes,
we must choose our microscale variable carefully to ensure microscale periodicity,
in a similar manner to Chapman & McBurnie (2011) and Richardson & Chapman
(2011).
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1

1

(a) (b)

∂ω ∂ω

1

ωs

ωf

ωs

ωf

y2 :=
x̂2

ε

Y1 :=
x̂1

ε

Y2 :=
x̂2

ε
≡ y2

ds
a(s)

y1 :=
1
ε

x̂1

a(x̂1)

Figure 2. An arbitrary cell within the porous medium (orange rectangle in figure 1) represented in
(a) transformed microscale coordinates and (b) naive microscale coordinates. The transformed microscale
coordinates y1 and y2 and the naive microscale coordinates Y1 and Y2 are related via (3.4a,b) and (3.5). The
transformed microscale coordinates allow the slow variation in cell width a to be scaled out of the cell problem,
such that each naive rectangular cell is transformed into a square.

Following the MMS, we isolate and solve the problem of flow and solute transport in an
individual cell, which is uniquely characterised by its aspect ratio

a(x̂1) = A(x̃1), (3.1)

and scale factor
λ(x̂1) = Λ(x̃1). (3.2)

We then construct a model for macroscopic flow and transport through the entire porous
medium from the solution to these individual cell problems via local averaging. The result
is a system of equations that are uniformly valid for all x̂ ∈ Ω̂ .

3.1. Two spatial scales
Applying the MMS as in Chapman & McBurnie (2011) and Richardson & Chapman
(2011), we consider the spatial domain on two distinct length scales: the macroscale
x := x̂, relative to which the porous medium is of unit length, and a microscale coordinate
y, in which we impose strict periodicity. The latter can be achieved via a mapping that
transforms each cell (comprising the porous material) to a tessellating periodic cell. Here,
we choose to transform to a square cell of unit area (see figure 2a). As such, our mapping
will stretch the obstacles comprising the macroscale filter by a factor of 1/(εa(x1)) in the
longitudinal direction and by 1/ε in the transverse direction, i.e.

dy1

dx1
= 1

εa(x1)
and

dy2

dx2
= 1

ε
, (3.3a,b)

thus motivating the definitions

y1 := 1
ε

∫ x1 ds
a(s)

and y2 := x2

ε
. (3.4a,b)

Note that any arbitrary distribution of obstacles in the longitudinal directions
(i.e. arbitrary longitudinal heterogeneity) can be imposed via the functions a(x1)
and λ(x1), while in the transverse direction the porous medium is exactly periodic.

932 A34-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

93
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

od
le

ia
n 

Li
br

ar
ie

s 
of

 th
e 

U
ni

ve
rs

ity
 o

f O
xf

or
d,

 o
n 

10
 D

ec
 2

02
1 

at
 1

0:
03

:0
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.938
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


L.C. Auton, S. Pramanik, M.P. Dalwadi, C.W. MacMinn and I.M. Griffiths

Additional heterogeneity in the transverse direction can be considered through a more
general mapping (Richardson & Chapman 2011).

To understand the implications of the mapping (3.4a,b) on a single cell, we note
that (on the macroscale) the domain of the porous medium, x ∈ Ω , comprises a fluid
domain Ωf and a complementary solid domain Ωs. A single cell can be obtained by
discretising the porous medium into rectangular cells of height ε and width εa(x1). For
any single rectangular cell in the domain, the transformation (3.4a,b) yields a transformed
microscale, y. On the transformed microscale, each cell ω comprises a fluid phase ωf (x1)
and solid obstacles, the union of which is denoted ωs(x1) := ω \ ωf (x1). The fluid–solid
interface ∂ωs(x1) is the union of the boundary of the obstacles. Each cell has four
additional boundaries that separate it from neighbouring cells. We denote the top and
bottom boundaries ∂ω= and the left and right boundaries ∂ω‖ with the union of these
being the unit cell boundary ∂ω.

Following Chapman & McBurnie (2011) and Richardson & Chapman (2011), we choose
the microscale mapping such that the cell size is the same throughout the domain. Hence,
for example, circles will approximately map to ellipses. Since the untransformed cell
size varies spatially through the domain, this microscale mapping will lead to obstacles
that vary by an O(ε) amount between neighbouring cells, but by an O(1) amount over
the macroscale. We systematically account for these variations using the methodology
presented in Bruna & Chapman (2015) and Dalwadi et al. (2015).

Finally, we note that the transformed microscale variable can be difficult to interpret
physically. As such, it will be helpful to define a ‘naive’ microscale coordinate

Y := x/ε, (3.5)

in which each cell is of unit transverse height but of longitudinal width a(x1) (figure 2b).
After completing the homogenisation procedure in the transformed microscale (3.4a,b),
we will transform the relevant cell problems to the naive microscale (3.5), in order to
present them more intuitively and subsequently solve them numerically. Note that the
domains and boundaries in the (naive) rectangular Y -cell will be denoted as in the square
y-cell, but with the addition of a superscript �. Further, we emphasise that the microscale
(cell) problems we derive and solve are not physical flow or transport problems, but rather
mathematical constructs that enable us to invoke the MMS.

We now perform the homogenisation. Following the MMS, we take x and y to be
independent spatial parameters. We therefore re-write all functions of x̂ as functions of
x and y: v̂(x̂) := v(x, y), p̂(x̂) := p(x, y), and ĉ(x̂, t) := c(x, y, t). We denote functions of
Y (rather than of y) with a superscript �. Spatial derivatives then become

∂

∂ x̂i
= ∂

∂xi
+ σij

ε

∂

∂yj
, (3.6a)

for i, j = 1, 2, and where σij = (σ )ij and

σ =
⎛
⎝ 1

a(x1)
0

0 1

⎞
⎠ . (3.6b)

Alternatively, in vector form, the spatial derivatives become

∇̂ := ∇x + 1
ε
∇a

y, (3.6c)
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where ∇x is the gradient operator with respect to the coordinate x and where

∇a
y :=

(
1
a

∂

∂y1
,

∂

∂y2

)ᵀ
, (3.6d)

is the gradient operator associated with the y-coordinate transform. For a given quantity
Z(x, y, t) = Z�(x, Y , t), there are two different averages of interest: the intrinsic (fluid)
average

〈Z〉(x, t) := 1
|ωf (x1)|

∫
ωf (x1)

Z(x, y, t) dSy ≡ 1
|ω�

f (x1)|
∫

ω�
f (x1)

Z�(x, Y , t) dSY , (3.7)

where the total fluid area in the transformed cell |ωf | (or naive cell |ω�
f |) is a function of

a(x1) and λ(x1), and the volumetric average

1
|ω(x1)|

∫
ω(x1)

Z(x, y, t) dSy ≡ 1
|ω�(x1)|

∫
ω�(x1)

Z�(x, Y , t) dSY , (3.8)

where |ω| = 1 and |ω�| = a. Here, dSy := dy1 dy2 is an area element of the transformed
microscale fluid region, dSY := dY1 dY2 is an area element of the naive microscale fluid
region and the porosity φ is

φ(x1) = |ωf (x1)|
|ω(x1)| ≡ |ωf (x1)|

(
=

|ω�
f (x1)|

|ω�(x1)|

)
. (3.9)

Thus, 〈c〉 is the amount of solute per unit fluid area within the porous medium, while φ〈c〉,
the volumetric average of the concentration, is the amount of solute per unit total area.

We define the average velocity, pressure and concentration as

V (x̂) ≡ V (x) := 〈v〉, P(x̂) ≡ P(x) := 〈p〉, and C(x̂, t) ≡ C(x, t) := 〈c〉,
(3.10a–c)

respectively. Note that φV is the standard Darcy flux.

3.2. Flow problem
For a passive tracer, the flow problem (2.6a) does not depend on c. Using (3.6), (2.6) in an
arbitrary cell become

−
(

∇x + 1
ε
∇a

y

)
p + (ε2∇2

x + ε∇x · ∇a
y + ε∇a

y · ∇x + (∇a
y )2)v = 0, y ∈ ωf (x1),

(3.11a)

(ε∇x + ∇a
y) · v = 0, y ∈ ωf (x1), (3.11b)

v = 0, y ∈ ∂ωs(x1), (3.11c)

where (3.11b) has been multiplied by epsilon.
To proceed using the MMS, we must also impose periodicity of v, p and c over a single

microscale cell (i.e. local periodicity). Enforcing periodicity of all quantities at both the
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top and bottom, ∂ω=, and left and right, ∂ω‖, cell boundaries leads to

v and p periodic on y ∈ ∂ω= and ∂ω‖. (3.11d)

We now seek an asymptotic solution to (3.11) by expanding v and p in powers of ε

v(x, y) = v(0)(x, y) + εv(1)(x, y) + · · · as ε → 0, (3.12a)

p(x, y) = p(0)(x, y) + εp(1)(x, y) + · · · as ε → 0. (3.12b)

Considering terms of O(1/ε) in (3.11a) gives

∇a
yp(0) = 0, (3.13)

from which we conclude the standard result that, at leading order, the pressure is uniform
on the microscale: p(0) = p(0)(x).

Considering terms of O(1) in (3.11) gives

−∇xp(0) − ∇a
yp(1) + (∇a

y )2v(0) = 0, y ∈ ωf (x1), (3.14a)

∇a
y · v(0) = 0, y ∈ ωf (x1), (3.14b)

v(0) = 0, y ∈ ∂ωs(x1), (3.14c)

with

v(0) and p(1) periodic on y ∈ ∂ω= and ∂ω‖. (3.14d)

The form of (3.14) suggests that we can scale ∇xp(0) out of the problem via the
substitutions

v(0) = −K(x, y) · ∇xp(0), (3.15a)

p(1) = −Π(x, y) · ∇xp(0) + p̆(x), (3.15b)

where p̆(x) is a scalar function, K(x, y) is a tensor function, and Π(x, y) is a vector
function. Using (3.15a,b) and the fact that p(0) is independent of y, (3.14a–c) becomes

(I − ∇a
y ⊗ Π + (∇a

y )2K) · ∇xp(0) = 0, y ∈ ωf (x1), (3.16a)

(∇a
y · K) · ∇xp(0) = 0, y ∈ ωf (x1), (3.16b)

K · ∇xp(0) = 0, y ∈ ∂ωs(x1), (3.16c)

with

Kij := (K)ij and Πi := (Π)i periodic on y ∈ ∂ω= and ∂ω‖, (3.16d)

where I is the identity tensor and where(
∇a

y ⊗ Π
)

ij
= σik

∂Πj

∂yk
and (∇a

y · K)i = σjk
∂Kji

∂yk
. (3.16e)

Note that, in the above, we have adopted the summation convention; we will adopt
the summation convention throughout this manuscript. Equations (3.16) must hold for
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arbitrary ∇xp(0), hence K(x, y) and Π(x, y) must satisfy the system

I − ∇a
y ⊗ Π + (∇a

y )2K = 0, y ∈ ωf (x1), (3.17a)

∇a
y · K = 0, y ∈ ωf (x1), (3.17b)

K = 0, y ∈ ∂ωs(x1), (3.17c)

with
Kij and Πi periodic on y ∈ ∂ω= and ∂ω‖. (3.17d)

In general, (3.17) must be solved numerically for each desired cell geometry (i.e.
pairs of a and λ). Note that (3.17) are independent of ∇xp(0), justifying our scalings in
(3.15).

To derive a macroscale relationship between velocity and pressure from (3.15a), we
expand the averaged quantities defined in (3.10a–c) in powers of ε

V (x̂) = V (0)(x̂) + εV (1)(x̂) + · · · as ε → 0, (3.18a)

P(x̂) = P(0)(x̂) + εP(1)(x̂) + · · · as ε → 0. (3.18b)

Note that
P(0)(x̂) = 〈p(0)(x)〉 ≡ p(0)(x), (3.19)

since p(0) is independent of y. We then take the intrinsic average of (3.15a) to determine
that the leading-order macroscale velocity depends on gradients in the leading-order
macroscale pressure according to Darcy’s law

φV (0) = −K(φ, a) · ∇̂P(0), (3.20a)

where we have introduced the macroscale permeability tensor

K(φ, a) := φ〈K〉, (3.20b)

and where φ and a are known functions of x̂1. Prescribing both φ and a determines λ via
a simple geometric relation, specific to the chosen geometry of the porous material.

Being averaged in y, (3.20a) depends on x̂ = x only and we have therefore replaced
∇x with ∇̂. If the cell geometry has symmetric reflectional symmetry along both the y1
and y2 axes, the symmetry of the boundary conditions implies that K is diagonal. If it is
additionally the case that a = 1, then K reduces to a scalar multiple of I .

Equation (3.20a) provides two equations for three unknowns. To develop another
constraint in terms of V (0) and P(0), consider the O(ε) terms from (3.11b) and (3.11c)

∇x · v(0) = −∇a
y · v(1), y ∈ ωf (3.21a)

v(1) = 0, y ∈ ∂ωs. (3.21b)

We take the intrinsic average of (3.21a) and apply the divergence theorem to the right-hand
side which vanishes by (3.21b). Then, applying the transport theorem (A12), derived in
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Appendix A, to the left-hand side of the intrinsic average of (3.21a) yields

∇x ·
∫

ωf

v(0) dSy = 0, (3.22)

where we have used (3.14c). Expressing (3.22) in terms of the averaged quantity V (0) gives

∇̂ · (φV (0)) = 0, (3.23)

which closes the system defined in (3.20a). Similarly to (3.20a), there is no y-dependence
in (3.23), so we have replaced ∇x with ∇̂.

To evaluate K , we find it convenient to map the system (3.17) to the naive microscale
coordinate Y , defined in (3.5). In the naive microscale coordinate, different values of
a manifest as physical changes to the domain rather than as changes to the governing
equations, yielding more intuitive cell problems. This mapping gives

I − ∇Y ⊗ Π�+∇2
YK�=0, Y ∈ ω�

f (x1), (3.24a)

∇Y · K�=0, Y ∈ ω�
f (x1), (3.24b)

K�=0, Y ∈ ∂ω�
s (x1), (3.24c)

with

K�
ij := (K�

)
ij and Π�

i := (
Π�
)

i periodic on Y ∈ ∂ω�
= and ∂ω�

‖, (3.24d)

where ∇Y is the gradient operator with respect to the coordinate Y . Note that

(∇Y ⊗ Π�
)

ij =
∂Π�

j

∂Yi
and (∇Y · K�)i =

∂K�
ji

∂Yj
. (3.24e)

In § 4 we consider a porous medium with a simple, prescribed microstructure. In that
section, we solve (3.24) using COMSOL Multiphysics, graphically present K(φ, a) and
discuss its implications.

3.3. Transport problem
We now perform a similar homogenisation procedure for the solute-transport problem
(2.7). The main difference between the classic homogenisation procedure and our
procedure here is that we use the transformed microscale y to convert a locally periodic
tessellating cell structure into a strictly periodic tessellating cell structure. As such, we
proceed following the framework of Chapman & McBurnie (2011) and Richardson &
Chapman (2011). A key step is to consider the unit normal n̂s that appears in (2.7b). In
general, under the microscale transformation (3.4a,b), n̂s will not be transformed to the
geometric normal of the transformed cell. Hence, we must take care when transforming
the normal into multiple-scales form.

Under the multiple-scales framework, the unit normal to the solid interface is written
as a function of both the macro- and microscales n̂s(x̂) = ns(x, y), and similarly for
the function f̂s(x̂) = fs(x, y), which vanishes on the solid interface. The consistent
transformation of ns ≡ ni

sei requires the consistent application of the MMS derivative
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transformation (3.6) to the definition of ns in terms of fs given by (2.8), to obtain the
transformed unit normal

ns =
(
∇a

y + ε∇x

)
fs∣∣∣(∇a

y + ε∇x

)
fs
∣∣∣ =

(
σij

∂fs
∂yj

+ ε
∂fs
∂xi

)
ei[

σklσkm
∂fs
∂yl

∂fs
∂ym

]1/2

+ O(ε)

. (3.25a)

It will also be helpful to define the leading-order transformed unit normal nY = nY
i ei as

follows:

nY =
σij

∂fs
∂yj

ei[
σklσkm

∂fs
∂yl

∂fs
∂ym

]1/2 , (3.25b)

such that ns ∼ nY as ε → 0. However, we also note that the geometric unit normal ny =
ny

i ei is defined as

ny := ∇y fs∣∣∇y fs
∣∣ =

∂fs
∂yi

ei[
∂fs
∂yj

∂fs
∂yj

]1/2 , (3.25c)

where ∇y is the gradient operator with respect to the coordinate y. Importantly, the
transformed normal (3.25a) and geometric normal (3.25c) are not equal. Moreover,
comparing (3.25b) and (3.25c) reveals that they are not even equal to leading order in
ε unless a ≡ 1.

To facilitate our subsequent manipulation of the transformed problem, we write the
transformed normal ns in terms of the geometric normal ny. Since (3.25c) can be
rearranged to obtain ∂fs/∂yi = |∇y fs|ny

i , we can re-write the transformed normal (3.25a)
as

ns =
(
σijn

y
j + εNi

)
ei[

σklσkmny
l ny

m
]1/2 + O(ε)

, (3.25d)

where the macroscale perturbation to the normal N = Niei is defined as

N := ∇x fs
|∇y fs| . (3.25e)

The macroscale perturbation to the normal N formally quantifies the effect of the
transformed microscale structure varying over the macroscale within the MMS framework.

Having defined the transformed normal in terms of the geometric normal, we are now
in a position to proceed with the homogenisation. Under the spatial transformations (3.6),
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(2.7) become

ε
∂c
∂t

=
(

ε
∂

∂xi
+ σij

∂

∂yj

)[
∂c
∂xi

+ σik

ε

∂c
∂yk

− Pe vic
]

, y ∈ ωf (x1), (3.26a)

− εγ c
[
σklσkmny

l ny
m
]1/2 + O(ε2)

= (σijn
y
j + εNi)

[
∂c
∂xi

+ σik

ε

∂c
∂yk

− Pe vic
]

, y ∈ ∂ωs(x1), (3.26b)

with

vi, c, periodic on y ∈ ∂ω= and ∂ω‖, (3.26c)

where v = viei. Note that, for clarity of presentation in what follows, we have multiplied by
ε when deriving (3.26a) from (2.7a). We now consider an expansion of the concentration
field of the form

c(x, y, t) = c(0)(x, y, t) + εc(1)(x, y, t) + ε2c(2)(x, y, t) + · · · as ε → 0. (3.27)

Note that we take Pe, γ = O(1) to be constants independent of ε, corresponding to
a distinguished limit where all transport mechanisms balance over the macroscale (cf.
(3.45c)). Considering (3.26) at leading order – that is, O(1/ε) – we obtain

σijσik
∂2c(0)

∂yj∂yk
= 0, y ∈ ωf (x1), (3.28a)

σijσikny
j
∂c(0)

∂yk
= 0, y ∈ ∂ωs(x1), (3.28b)

v
(0)
i , c(0) periodic on y ∈ ∂ω= and ∂ω‖. (3.28c)

By inspection, we find that c(0) = c(0)(x, t) is a non-trivial solution to this system.
By linearity, this solution is unique and therefore the leading-order concentration is
independent of y.

Considering (3.26) at O(1), we obtain

σijσik
∂2c(1)

∂yj∂yk
= 0, y ∈ ωf (x1), (3.29a)

σijσikny
j
∂c(1)

∂yk
= −σijn

y
j
∂c(0)

∂xi
, y ∈ ∂ωs(x1), (3.29b)

v
(1)
i , c(1) periodic on y ∈ ∂ω= and ∂ω‖, (3.29c)

where we have used c(0) = c(0)(x, t), microscale incompressibility (3.14b) and the no-slip
and no-penetration conditions (3.14c) on the solid surface. The form of (3.29) suggests
that we can scale ∇xc(0) out of the problem via the substitution

c(1)(x, y, t) = −∂c(0)

∂xn
Γn(x, y) + c̆(x, t), (3.30)
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A homogenised model for a heterogeneous porous medium

where c̆ is a scalar function and the functions Γn satisfy the following cell problems:

σijσik
∂2Γn

∂yj∂yk
= 0, y ∈ ωf (x1), (3.31a)

σijσikny
j
∂Γn

∂yk
= σnin

y
i , y ∈ ∂ωs(x1), (3.31b)

Γn periodic on y ∈ ∂ω= and ∂ω‖. (3.31c)

Note that we enforce

〈Γn〉 = 0, (3.31d)

which uniquely defines Γn. Equations (3.31) are obtained by substituting (3.30) into (3.29).
Equations (3.31) must then be solved numerically for n ∈ {1, 2} and each desired cell
geometry (i.e. pairs of a and λ). Note that (3.31) are independent of ∇xc(0), justifying
our scalings in (3.30).

The goal of this analysis remains to determine a macroscale equation for the
concentration. Since there are no macroscopic transport mechanisms present at this order,
there is not enough information to determine a macroscale governing equation for the
concentration. Hence, we must proceed to the next order in (3.26), which yields

∂c(0)

∂t
= σij

∂Ai

∂yj
+ ∂Bi

∂xi
, y ∈ ωf (x1), (3.32a)

−γ c(0)
[
σklσkmny

l ny
m
]1/2 = σijn

y
jAi + NiBi y ∈ ∂ωs(x1), (3.32b)

v
(2)
i , c(2) periodic on y ∈ ∂ω= and ∂ω‖, (3.32c)

where

Ai := σij
∂c(2)

∂yj
+ ∂c(1)

∂xi
− Pe

(
v

(0)
i c(1) + v

(1)
i c(0)

)
, (3.32d)

Bi := σij
∂c(1)

∂yj
+ ∂c(0)

∂xi
− Pe v

(0)
i c(0). (3.32e)

Integrating (3.32a) over the transformed microscale fluid domain ωf gives

|ωf |∂c(0)

∂t
=
∫

ωf

σij
∂Ai

∂yj
dSy +

∫
ωf

∂Bi

∂xi
dSy. (3.33)

Applying the divergence theorem to the first integral on the right-hand side of (3.33) yields∫
ωf

σij
∂Ai

∂yj
dSy =

∫
∂ωs

σijn
y
jAi dsy +

∫
∂ω

σijn�
j Ai dsy, (3.34)

where dsy signifies an element of a scalar line integral and n� = n�
j ej is the

outward-facing unit normal to the external square boundary ∂ω. Since Ai is periodic on
∂ω, the last term on the right-hand side of (3.34) vanishes. Then, using (3.32b), we may
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re-write (3.34) as∫
ωf

σij
∂Ai

∂yj
dSy = −

∫
∂ωs

NiBi dsy −
∫

∂ωs

γ c(0)
[
σklσkmny

l ny
m
]1/2 dsy. (3.35)

To manipulate the final integral on the right-hand side of (3.33), we apply the transport
theorem (A12) ∫

ωf

∂Bi

∂xi
dSy = ∂

∂xi

∫
ωf

Bi dSy +
∫

∂ωs

NiBi dsy. (3.36)

Thus, combining (3.33), (3.35) and (3.36) we obtain

|ωf |∂c(0)

∂t
= ∂

∂xi

∫
ωf

[
σij

∂c(1)

∂yj
+ ∂c(0)

∂xi
− Pe v

(0)
i c(0)

]
dSy

− γ c(0)

∫
∂ωs

[
σklσkmny

l ny
m
]1/2 dsy. (3.37)

Using the definitions of c(1) (3.30) and V (0) (3.18a) and dividing through by |ωf | = φ,
we can re-write (3.37) as

∂C(0)

∂t
= 1

|ωf |
∂

∂ x̂i

[
|ωf |Dij(φ, a)

∂C(0)

∂ x̂j
− Pe |ωf |V(0)

i C(0)

]
− γ F(φ, a)C(0), (3.38a)

where we have expanded the intrinsic concentration C in powers of ε

C(x, t) = C(0)(x, t) + εC(1)(x, t) + ε2C(2)(x, t) + · · · as ε → 0, (3.38b)

and have noted that C(0) = c(0). Note also that we have replaced xi with x̂i in (3.38a) since
it has been averaged over the microscale and is thus independent of y. In (3.38a), the
components of the effective diffusivity tensor Dij(φ, a) are defined as

Dij(φ, a) := δij − 1
|ωf |

∫
ωf

σij
∂Γj

∂yj
dSy = δij − 1

φ

∫
ωf

σij
∂Γj

∂yj
dSy, (3.38c)

where δij is the Kronecker delta. The effective adsorption strength F(φ, a) is defined as

F(φ, a) := 1
|ωf |

∫
∂ωs

[
σklσkmny

l ny
m
]1/2 dsy. (3.38d)

Hence, our homogenised transport equation is given by (3.38a), (3.38c) and (3.38d).
In order to interpret the coefficients in this equation physically and evaluate them
numerically, we now transform our coefficients into the naive microscale.

3.3.1. Transforming into the naive microscale coordinate
To interpret the rate F(φ, a) physically, it is helpful to map its definition (3.38d)
to the naive microscale coordinate Y , defined in (3.5), in a similar way to
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A homogenised model for a heterogeneous porous medium

Richardson & Chapman (2011). Firstly, consider an arbitrary vector function z(x, y, t) =
z�(x, Y , t), such that z = ziei and z� = z�

i ei then (3.8), with Z = ∇a
y · z ≡ ∇Y · z� = Z�

gives
1

|ω(x1)|
∫

ω(x1)
σij

∂zi

∂yj
, dSy ≡ 1

|ω�(x1)|
∫

ω�(x1)

∂z�
i

∂Yi
dSY . (3.39)

Applying the divergence theorem to both sides of (3.39) leads to the relation

1
|ω|

∫
∂ωs

σijzjn
y
i dsy = 1

|ω�|
∫

∂ω�
s

nY
i

�
z�

i dsY , (3.40)

where nY
i (y) = nY

i
�
(Y ). Note that as σ is diagonal σijzjn

y
i = σijn

y
j zi. Additionally, (3.25)

lead to the relation
σijn

y
j = nY

i
[
σklσkmny

l ny
m
]1/2

. (3.41)

Thus, setting zi = nY
i gives∫

∂ωs

[
σklσkmny

l ny
m
]1/2 dsy =

∫
∂ωs

σijn
y
j nY

i dsy = |ω|
|ω�|

∫
∂ω�

s

dsY = |∂ω�
s |

|ω�| , (3.42)

since nY · nY = nY� · nY� = 1 and |ω| = 1. Hence,

F(φ, a) = |∂ω�
s |

|ωf ‖ω�| ≡ |∂ω�
s |

|ω�
f |

, (3.43)

and we deduce that F represents the obstacle perimeter within a cell normalised by the
fluid area within a cell.

Additionally, in order to evaluate Dij we find it convenient to map the system (3.31)
to the naive microscale coordinate Y , defined in (3.5). This mapping transforms the cell
problems (3.31) to

∇2
YΓ �

n =0, Y ∈ ω�
f (x1), (3.44a)

nY� · ∇YΓ �
n =nY

k
�
, Y ∈ ∂ω�

s (x1), (3.44b)

Γ �
n periodic on Y ∈ ∂ω�

= and ∂ω�
‖, (3.44c)

with
〈Γ �

n 〉 = 0. (3.44d)

The components of the effective diffusivity tensor (3.38c) become

Dij(φ, a) = δij − 1
|ω�

f |
∫

ω�
f

∂Γ �
j

∂Yi
dSY = δij − 1

aφ

∫
ω�

f

∂Γ �
j

∂Yi
dSY . (3.45a)

We can also write (3.45a) in tensor form D as

D(φ, a) = I − 1
|ω�

f |
∫

ω�
f

∇Y ⊗ Γ � dSY . (3.45b)

To evaluate D, we solve the transformed cell problems (3.44) numerically in COMSOL
Multiphysics.
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Using the results from this subsection, we may re-write (3.38a) in vector/tensor form as

∂C(0)

∂t
= 1

φ
∇̂ ·

(
φD∇̂C(0) − Pe φV (0)C(0)

)
− γ

|∂ω�
s |

|ω�
f |

C(0). (3.45c)

Again, since there is no y-dependence in (3.45c), we have replaced ∇x with ∇̂. Equation
(3.45c) describes macroscopic transport by advection and diffusion in a porous medium
with chemical sorption, where φD · ∇̂C(0) is the diffusive flux per unit area of porous
medium and D · ∇̂C(0) is the diffusive flux per unit area of fluid. The form of the
effective macroscale transport equation (3.45c) is similar to that obtained in Dalwadi
et al. (2015), where a simpler problem with a constant cell size is considered, resulting
in a more straightforward upscaling procedure. Here, we have formally accounted for a
slowly varying cell size and a slowly varying microscale geometry. The most significant
difference between structure of the macroscale (3.45c) and the equivalent result obtained
from the classic homogenisation of a strictly periodic problem arises from the slowly
varying microscale geometry, which manifests through the explicit (non-trivial) porosity
dependence of the diffusive term (cf. Bruna & Chapman 2015). We find that the effect
of the slowly varying cell size is less important to the structural form of the derived
macroscale equations, which was not known at the outset.

Here, we have formally accounted for slowly varying cell size and slowly varying
obstacle size. The resulting model has the same form as that derived in previous work
for uniform cell size and slowly varying obstacle size (cf. Bruna & Chapman 2015), in
the sense that there are three macroscopic coefficients K , D and F that vary with the
local microstructure via the values of φ, R and here also a. Allowing for slowly varying
cell size has not otherwise altered the mathematical structure of the macroscale problem
at leading order, suggesting that different types of microscale heterogeneity can lead to
a similar mathematical structure on the macroscale. The key difference between these
heterogeneous results and the classical result for a uniform microstructure is that factors
of porosity appear in front of the time derivative and within the divergence, the latter
multiplying the macroscopic solute flux.

In § 4, we calculate and discuss the permeability, effective diffusivity and effective
adsorption strength for a porous medium with a simple, prescribed microstructure. Note
that although our model problem of a one-dimensional filter in § 4.2 features flow in the
longitudinal direction, the macroscopic flow and transport equations (3.20), (3.23) and
(3.45c) and the results in § 4.1 are valid for any arbitrary flow direction.

4. Illustrative example

In this section, we examine a specific pore structure where the solid domain comprises
an array of solid circular obstacles centred on a rectangular lattice. Specifically, each
cell contains at its centre a fixed, rigid circular obstacle of dimensionless radius R(x1).
Since R(x1) uniquely controls the obstacle size over the length of the medium, we take
the scale factor λ(x1) = R(x1). To prevent the obstacles from overlapping, we require that
2R ≤ min(a, 1). This construction leads to a porous medium whose properties vary in the
longitudinal direction but not in the transverse direction (see figure 3). For this geometry
the porosity φ is

φ(x1) = |ωf (x1)|
|ω(x1)| =

|ω�
f (x1)|

|ω�(x1)| ≡ 1 − πR(x1)
2

a(x1)
, (4.1)
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A homogenised model for a heterogeneous porous medium

Flow

1

x2
εa (x1)

εR(x1)

x1

ε � 1

Figure 3. We consider the flow of fluid carrying solute through a heterogeneous porous medium in two
dimensions for a specific illustrative example. Here, the porous medium is of unit length and is formed of
an array of circular obstacles of dimensionless radius R(x1), each located in the centre of a rectangular cell of
unit transverse height and longitudinal width a(x1).

since |ω�| = a and |ω�
f | = a − πR2. Further, in this case we may explicitly evaluate the

effective adsorption rate F(φ, a) in (3.38d) using the formulation from (3.43), giving

F(φ, a) = |∂ω�
s |

|ω�
f |

= 2πR
aφ

= 2 (1 − φ)

Rφ
. (4.2)

Note that, with this geometry and in the limit a = 1, (3.38) become the same system as
(3.22) in Dalwadi et al. (2015) in two dimensions (i.e. d = 2), but written in terms of the
intrinsic average rather than the volumetric average.

4.1. Macroscale flow and transport properties
For this specific geometry we explore the impact of microstructure on macroscopic
flow and transport by analysing the permeability and effective net diffusivity tensors,
K and φD, respectively. To determine K we solve (3.24) in COMSOL Multiphysics
using the ‘Laminar Flow (spf)’ interface (‘Fluid Flow’ → ‘Single Phase Flow’ →
‘Laminar flow (spf)’). The domain is discretised using the ‘Physics-controlled mesh’ with
the element size set to ‘Extremely fine’. Similarly, to evaluate D, we solve (3.44), in
COMSOL Multiphysics using the ‘Laplace Equation (lpeq)’ interface (‘Classical PDEs’
→ ‘Mathematics branch’ → ‘Laplace Equation (lpeq)’). For the flow problem, the domain
is discretised using the ‘Physics-controlled mesh’ with the element size set to ‘Extremely
fine.’

The tensors K and D depend on microstructure via a, φ and R, any two of which are
independent and the third prescribed by (4.1) (figure 4). We therefore have one additional
degree of microstructural freedom relative to Dalwadi et al. (2015) and this allows us to
explore the anisotropy in the system. We explore the effect of the a, R and φ parameter
space on K and φD in figures 5 and 6, respectively. The effective diffusivity D is shown
for reference in figure 10a–d (Appendix B).

We have validated our analysis for this geometry in a number of ways. Firstly, we
have compared our results with those in Dalwadi et al. (2015) for the special case
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101

100

10–1

10–2

101

100

10–1

10–2

a

(a) (b)

φ

φ

0.2 0.4 0.6 0.8 1.0 0 0.1 0.2 0.3 0.4 0.5
R

R

Figure 4. The porosity φ of a rectangular cell increases with aspect ratio a and decreases with obstacle radius
R according to (4.1). (a) Aspect ratio a vs φ for R ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5} (dark
to light). The attainable region of the φ-a plane (shaded grey) is bounded below by φmin given by (3.9)
with a = 2R (dot-dashed line). The cell geometry for two distinct points with R = 0.25 is shown pictorially.
(b) Aspect ratio a vs R for φ ∈ {0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.925, 0.975, 0.995, 0.999} (dark to light).
The attainable region of the R–a plane (shaded grey) is also bounded below by amin := 2R (dot-dashed line).
Note that the smallest attainable φ for any R, a combination is φmin(R = 1/2) = 1 − π/4.

of a ≡ 1, confirming both the final homogenised equations ((3.20), (3.45a), (3.45c)
and (4.2)) and the detailed numerical results (black lines; figures 5–7). Secondly, we
have confirmed our results in the Hele-Shaw limit of parallel, disconnected channels
where the longitudinal permeability is 1/12 (black diamond; figure 5) and the transverse
permeability vanishes. Finally, we have confirmed that both the transverse permeability
and the transverse effective diffusivity vanish when the transverse connectivity vanishes
(a → 2R or 2R → a; red lines in figures 5 and 6), and that the permeability diverges and
the effective diffusivity tends to unity as the obstacles vanish (φ → 1).

Increasing φ at fixed R is achieved by increasing a (figure 4a), such that the obstacles
move further apart in the longitudinal direction only; as a result, K 11, K 22, φD11 and φD22
all increase (figures 5a,c and 6a,c). As φ → 1 (a → ∞), both K 11 and K 22 diverge as the
resistance to flow vanishes (figure 5a,c), and both φD11 and φD22 tend to 1 as molecular
diffusion becomes unobstructed (figure 6a,c). As φ → φmin(R) (a → 2R) at fixed R, the
obstacles move closer together in the longitudinal direction and the pore space becomes
disconnected in the transverse direction, so that K 22 and φD22 vanish; K 11 and φD11 are
minimised but do not vanish. Further taking R → 0, the longitudinal problem reduces to
a set of disconnected parallel channels of unit transverse width, for which K 11 = 1/12
(figure 5a,b, black diamond).

Increasing R at fixed φ is similarly achieved by increasing a (figure 4b), in which case
the transverse channels between obstacles grow wider while the longitudinal channels
between obstacles grow narrower. As a result, K 11 and φD11 decrease while K 22 and
φD22 increase. As R → 1/2 at fixed φ, the longitudinal channels close and K 11 and φD11
vanish, but the transverse channels become wider and K 22 and φD22 are maximised.
The longitudinal permeability, K 11, is weakly non-monotonic in R for larger values of
φ (figure 5b), which means that the longitudinal permeability of a high-porosity porous
medium can be maximised for a given φ by appropriately varying R and a.

When a ≡ 1, equivalent to the case considered in Dalwadi et al. (2015), K and
φD become isotropic. Increasing φ corresponds to decreasing R, in which case both
the longitudinal and transverse spacing between obstacles decreases (figure 4) which
decreases K 11 = K 22 and φD11 = φD22 (figures 5 and 6, solid black lines). For a �= 1,
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Figure 5. The longitudinal permeability K 11 (a,b), transverse permeability K 22 (c,d) and the
permeability–anisotropy ratio K 22/K 11 (e, f ) depend strongly on microstructure. Panels (a,c,e) show K 11,
K 22 and K 22/K 11 against φ for fixed values of R ∈ {0.1, 0.2, 0.3, 0.4, 0.49}, with a varying according to
(4.1). (b,d, f ) Values of the same quantities against R for fixed values of φ ∈ {0.65, 0.7, 0.8, 0.9, 0.95}, with
a varying according to (4.1). For a given value of R, the minimum porosity φmin(R) is given by (4.1) with
a = 2R. Note that K 11 is non-zero at φmin(R) for all values of φ (dot-dashed curve, (a,b)), whereas K 22
vanishes at φmin ((c,e) red vertical asymptotes). There exists a smallest possible R for any given φ ((d, f )
red vertical asymptotes). In all cases, K 11 and K 22 are as defined in (3.20b) and calculated using COMSOL
Multiphysics. The permeability is isotropic when a ≡ 1 (solid black curves; Dalwadi et al. 2015). The limit
R → 0 and a → 0 corresponds to a set of parallel but disconnected channels with unit transverse width, for
which φ → 1, K 22 → 0 and K 11 → 1/12 (black diamonds in a,b).

our microstructure is inherently anisotropic (K 11 /= K 22, φD11 /=φD22). For a < 1, the
longitudinal channels are wider than the transverse channels, such that K 22/K 11 < 1
and D22/D11 < 1 and both ratios vanish as a → 2R (φ → φmin where φmin is given by
(4.1); figures 5(e, f ) and 6(e, f ), respectively). For a > 1, the longitudinal channels are
narrower than the transverse channels, such that K 22/K 11 > 1 and D22/D11 > 1. The
permeability–anisotropy ratio, K 22/K 11, increases monotonically with both φ and R, and
diverges as φ → 1 at fixed R (K 22 diverges faster than K 11 because the obstacles never
get further apart in the transverse direction) and as R → 1/2 at fixed φ (K 11 vanishes;
figure 5e, f ). The diffusivity–anisotropy ratio, D22/D11, increases monotonically with R
for all φ ∈ (φmin, 1), diverging as R → 1/2 (figure 6f ). For fixed R, this ratio increases
monotonically with φ for a ≤ 1, is equal to unity for a = 1 (isotropic geometry), and
must approach unity as φ → 1 (a → ∞; unobstructed molecular diffusion; figure 6e).
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Figure 6. The net longitudinal diffusivity φD11 (a,b), net transverse diffusivity φD22 (c,d) and the
diffusivity–anisotropy ratio D22/D11 (e, f ) depend strongly on microstructure. Panels (a,c,e) show φD11, φD22
and D22/D11 against φ for fixed values of R ∈ {0.1, 0.2, 0.3, 0.4, 0.49}, with a varying according to (4.1). Panels
(b,d, f ) show the same quantities against R for fixed values of φ ∈ {0.65, 0.7, 0.8, 0.9, 0.95}, with a varying
according to (4.1). For a given value of R, the minimum porosity φmin(R) is given by (4.1) with a = 2R. Note
that φD11 is non-zero at φmin(R) for all values of φ (dot-dashed curve, a,b), whereas φD22 vanishes at φmin. In
all cases, D11 and D22 are as defined in (3.45a) and calculated using COMSOL Multiphysics. Both D11 and D22
tend to 1 as φ → 1, which corresponds to the limit of free-space diffusion. The net effective diffusivity, φD, is
isotropic when a = 1 (solid black curves), in agreement with the results presented in Dalwadi et al. (2015).

These bounds require that D22/D11 has an intermediate maximum in φ (or in a) at fixed
R, the amplitude of which diverges as R → 1/2. Specifically, the non-monotonicity in
the ratio D22/D11 occurs due to the relative rates of increase of φD11 and φD22. For
φ = φmin (a = 2R) there is no transverse connectivity thus separating the obstacles slightly
(a small increase in a) leads to a sharp increase in φD22 but only a slight increase in φD11
since the longitudinal connectivity is unchanged and most longitudinal mixing occurs
in the longitudinal channels. Conversely, as φ → 1 (a → ∞) the longitudinal spacing
between obstacles diverges which means that φD11 is very sensitive to changes in a
as longitudinal mixing occurs predominantly between longitudinally adjacent obstacles
(in the transverse channels), thus φD11 rapidly approaches unity. However, significant
transverse connectivity is preserved for large a so increasing a further has minimal effect
on φD22 since most transverse mixing occurs in the transverse channels in this limit.
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Figure 7. The effective adsorption rate F depends strongly on microstructure. (a) Effective adsorption strength
F against φ for fixed values of R ∈ {0.1, 0.2, 0.3, 0.4, 0.49}, with a varying according to (4.1). (b) Effective
adsorption strength F against R for fixed values of φ ∈ {0.65, 0.7, 0.8, 0.9, 0.95}, with a varying according to
(4.1). In all cases, F is as defined in (4.2). For a given value of R, the minimum porosity φmin(R) is given by
(4.1) with a = 2R. The results of Dalwadi et al. (2015) are again reproduced when a = 1 (solid black).

Note that the longitudinal diffusivity D11 is non-monotonic in φ for each R as a varies
(Appendix B, figure 10).

The partially absorbing boundary condition on the microscale, whose strength is
measured by the parameter γ in (2.7b), leads to an effective sink term in the macroscale
transport problem, whose strength is measured by γ F, where F is given in (4.2). Here, F
is the ratio of the perimeter of an obstacle to the fluid area within a cell, which are 2πR
and aφ, respectively, for a rectangular array of circular obstacles. We consider the impact
of microstructure on the removal of solute in more detail in § 4.2. Note that F decreases as
φ increases at fixed R, as should be expected, but also as R increases at fixed φ; the latter
occurs because an increase in obstacle size requires a correspondingly larger increase in
cell size to keep φ constant. We consider the impact of microstructure on the removal of
solute in more detail in § 4.2.

4.2. Simple one-dimensional filter
We now use the homogenised model to understand the effect of microstructure and
Péclet number on filter efficiency in the context of a simple one-dimensional steady-state
filtration problem. We identify the performance of the filter with the rate at which it
removes solute, and thus use the leading-order outlet concentration C(0)

out as a measure
of filtration efficiency. Specifically, we consider (3.20) and (3.38) at steady state, with
imposed flux and concentration at the inlet,

φV (0) = e1 at x̂1 = 0, (4.3a)

C(0) = 1 at x̂1 = 0, (4.3b)

and passive outflow at the outlet,

∂C(0)

∂ x̂1
= 0 at x̂1 = 1. (4.3c)

Since these boundary conditions (4.3a) are compatible with unidirectional flow, we take
V (0)(x̂) = V(0)

1 (x̂1)e1 and C(0)(x̂, t) = C(0)(x̂1). Thus, (3.23) leads to

d
dx̂1

(
φV(0)

1

)
= 0, (4.4)
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which, on application of the inlet condition (4.3a), gives the macroscale flux φV(0)
1 ≡

1 for all x̂1. The associated pressure drop across the entire filter, �P(0), is obtained by
integrating (3.20) and using the fact that φV(0)

1 ≡ 1, which gives

�P(0) =
∫ 1

0

1
K 11(x)

dx. (4.5)

Note that the right-hand side of (4.5) is a measure of the total flow resistance of the entire
filter; the inverse of this quantity can be thought of as an effective permeability for the
entire filter.

Hence, the homogenised governing equation for the steady concentration distribution
C(0)(x̂1) (3.45c) becomes

1
φ

d
dx̂1

[
φD11(φ, R)

dC(0)

dx̂1
− Pe C(0)

]
= γ F(φ, R)C(0) for x̂1 ∈ (0, 1), (4.6)

where F(φ, R) is defined in (3.43). We solve (4.6) subject to (4.3b) and (4.3c) numerically
using a finite-difference scheme. We discretise the interval [0, 1] using a uniform
mesh of size �x = 1/N and we approximate derivatives using a second-order-accurate
central-difference formula. The results presented below were obtained using N = 500.
Below, we consider filters with varying porosity and filters with uniform porosity, but
with heterogeneous microstructure in both cases.

4.2.1. Porosity gradients
We first consider filters with varying porosity. Recall that a given porosity φ may be
achieved in two different ways: by fixing a(x̂1) and varying R(x̂1), as considered in Dalwadi
et al. (2015) for a ≡ 1; or by fixing R(x̂1) and varying a(x̂1). We consider these options
in figure 8, for the same three porosity fields in both cases: linearly increasing with x̂1,
uniform in x̂1, or linearly decreasing with x̂1. Specifically, we take φ(x̂1) = φ0 + mφ(x̂1 −
0.5), where φ0 is the average porosity (also the mid-point porosity) and mφ is the porosity
gradient. We take φ0 = 0.8 and mφ = 0.3 (increasing in x̂1), mφ = 0 (uniform in x̂1), or
mφ = −0.3 (decreasing in x̂1). Note that |mφ| defines the filter microstructure and sgn(mφ)

is simply the orientation of the filter.
When varying φ by varying R at fixed a ≡ 1, as considered by Dalwadi et al. (2015),

the sign of the porosity gradient has a modest impact on the concentration distribution
within the filter: mφ > 0 leads to a steeper gradient in C(0) near the inlet and a shallower
gradient in C(0) near the outlet, whereas mφ < 0 leads to a more uniform gradient in
C(0) throughout the filter (figure 8a). However, the outlet concentration C(0)

out := C(0)(1)

is remarkably insensitive to mφ . The outlet concentration is slightly lower for mφ < 0,
and this slight difference decreases as Pe increases (figure 8b). As Pe increases, advection
becomes stronger causing more solute to be swept through the filter; as a result, C(0)(x̂1)

increases with Pe for all x̂1 and C(0)
out more than doubles as Pe increases from 0 to 10.

The case when a ≡ 1 is considered in more detail in Dalwadi et al. (2015). Varying φ by
varying a at fixed R ≡ 0.4 leads to qualitatively similar results, but C(0)(x) and C(0)

out are
more sensitive to mφ (figure 8c,d). For all Pe, attaining a desired porosity gradient via
varying R leads to a more efficient filter than varying a, in the sense that C(0)

out is lower for
the same φ(x1).
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Figure 8. Steady-state concentration field C(0)(x̂1) for Pe ∈ {0, 1, 5} (a,c) and outlet concentration C(0)
out :=

C(0)(1) as a function of Pe (b,d). Panels (a,b) show a ≡ 1 and φ(x̂1) = 0.8 + mφ(x̂1 − 0.5). Panels (c,d)
show R ≡ 0.4 and φ(x̂1) = 0.8 + mφ(x̂1 − 0.5). In both cases, mφ = 0.3 (solid), mφ = 0 (dotted) and mφ =
−0.3 (dashed).

4.2.2. Microstructural gradients with uniform porosity
We now consider filters with uniform porosity but gradients in microstructure. We
therefore fix φ and simultaneously vary R and a with x̂1, recalling that a is related to
R via (4.1). We consider two types of variation: an imposed gradient in R with a varying
to maintain constant φ (via (4.1)) or an imposed gradient in a with R varying to maintain
constant φ (via (4.1)). We consider these options in figure 9.

We first consider R(x̂1) = R0 + mR(x̂1 − 0.5), where R0 is the average obstacle
radius (also the mid-point radius) and mR is the gradient (figure 9a,b). We take
R0 = 0.36 and mR = 0.14 (increasing in x̂1), mR = 0 (uniform in x̂1) or mR = −0.14
(decreasing in x̂1).

When varying R linearly, the sign of mR has a modest impact on the concentration
distribution: for any uniform porosity, mR > 0 leads to a shallower gradient in C(0) and
a higher concentration at every point within the filter, including the outlet. Thus, for any
uniform porosity, mR < 0 is always a more efficient filter than mR > 0.

We next consider a(x̂1) = a0 + ma(x̂1 − 0.5), where a0 is the average cell width (also
the cell width at the mid-point) and ma is the gradient of a over x̂1 (figure 9c,d). We
take a0 = 1.34 and ma = 1.8 (increasing in x̂1), ma = 0 (constant in x̂1) or ma = −1.8
(decreasing in x̂1). From (4.1) for fixed φ, it can be seen that a ∝ R2, thus, a decrease in a
must be mirrored by a decrease in R to maintain a uniform φ. Thus, we expect the same
qualitative behaviour for a linear gradient in R (figure 9a,b) as for a linear gradient in a
(figure 9c,d). We find that ma < 0 leads to a more efficient filter for all φ.
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Figure 9. Steady-state concentration field C(0)(x̂1) for φ ∈ {0.7, 0.8, 0.9} (a,c), and outlet concentration
C(0)

out := C(0)(1) as a function of φ (b,d). Panels (a,b) show Pe = 1 and R(x̂1) = 0.36 + mR(x̂1 − 0.5) for
mR = 0.14 (solid), mR = 0 (dotted), mR = −0.14 (dashed). The aspect ratio a varies following (4.1). For
R0 = 0.36 and mR = ±0.14 the minimum attainable porosity is 1 − 0.145π ≈ 0.54 ((b); black dots). Panels
(c,d) show Pe = 1 and a(x̂1) = 1.34 + ma(x̂1 − 0.5) for ma = 1.8 (solid), ma = 0 (dotted) and ma = −1.8
(dashed). The radius R varies following (4.1). For a0 = 1.34 and ma = ±1.8 the minimum attainable porosity
is 1 − 0.11π ≈ 0.66 ((d); black dots).

Note that, for any φ ∈ (1 − 0.11π, 1) – that is, the range of porosities attainable for
imposed linear gradients in both R and a (see figure 9 caption) – prescribing a and
taking ma < 0 predicts most efficient filter considered here (comparing figures 9b and 9d).
Similarly, for large φ � 0.725 prescribing a and taking ma > 0 predicts the least efficient
filter, whereas, for small φ � 0.725 prescribing R and taking mR > 0 predicts the least
efficient filter.

5. Conclusions

We have systematically derived a macroscopic model for flow, transport and sorption
during steady flow in a two-dimensional heterogeneous and anisotropic porous medium
using generalisations of standard homogenisation theory for slow variations in the size of
periodic cells (Chapman & McBurnie 2011; Richardson & Chapman 2011) and locally
periodic microstructures (Bruna & Chapman 2015; Dalwadi et al. 2015). We derived
a model valid for a heterogeneous porous medium comprising cells of varying size
each containing multiple arbitrarily shaped obstacles. The heterogeneity originates from
slowly varying obstacle size and/or obstacle spacing along the length of the porous
medium; the latter also induces strong anisotropy within the problem. For the flow
problem, we obtain Darcy’s law with an anisotropic permeability tensor, and for the
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solute concentration problem we obtain an advection–diffusion–reaction equation with
an anisotropic effective diffusivity tensor. The permeability, effective diffusivity and the
removal term are functions of the porosity, obstacle spacing and a scale factor controlling
the variation in obstacle size across the medium; any two of these are free choices which
prescribe the third. In § 4 we consider a simple geometry comprising circular obstacles
centred in rectangular cells. We determine the corresponding permeability and effective
diffusivity numerically and show how these depend on the radius of the obstacles and
the aspect ratio of the cells. This work illustrates and quantifies how the permeability and
diffusivity of a porous medium depend not only on the porosity of the medium, but also
on the microstructure of the medium.

Our homogenisation procedure allows for slowly varying changes to the cell surrounding
each circle that comprises the filter. This means that the total area of each individual cell
may differ between cells. This is a new aspect to homogenisation and we have carefully
derived a transport theorem to account for how these microstructural changes affect
the macroscale transport. Using this transport theorem we have shown that macroscale
incompressibility is preserved (the divergence of the Darcy flux vanishes) and that this
is independent of the individual cell size. The two degrees of microstructural freedom
(varying obstacle size and spacing) enable us to consider a wide range of heterogeneities
on the microscale, such as maintaining a uniform porosity while systematically varying
the microstructure. These macroscale equations are computationally inexpensive to solve,
allowing for optimisation of parameters through large sweeps, which would not be possible
with DNS.

We have focused on a regime in which diffusion balances advection and removal at
the macroscale and dominates advection and removal at the microscale (i.e. Pe = O(1),
εPe � 1). Sub-limits involving weaker advection and/or removal may be taken directly
in the final result without repeating the interim analysis. For scenarios with stronger
advection (i.e. εPe = O(1)), as might be the case in many industrial filtration scenarios,
hydrodynamic dispersion becomes important and new terms that are proportional to the
product of velocity and concentration gradient will arise in the homogenised equations.
Our analysis here lays the foundation for future work to incorporate dispersive effects.

The example geometry considered in § 4 is two-dimensional; a direct physical analogue
would be a quasi-two-dimensional filter comprising solid circular pillars that are centred
on a rectangular grid and sufficiently tall that boundary effects at the top and bottom walls
can be neglected. This is a simple but appropriate model for non-woven fibrous filters,
which form a major part of the filtration industry (e.g. those in air purifiers and vacuum
cleaners) (Spychała & Starzyk 2015; Printsypar, Bruna & Griffiths 2019), magnetic
separation filters composed of wire wool (Mariani et al. 2010) and microfluidic devices
containing tall micropillars (Benítez et al. 2012; Wang et al. 2013). The strong anisotropy
in the problem could be useful for filter design; it is achieved while maintaining the circular
shape of the obstacles and the principal directions of the permeability and diffusivity
tensors are fixed as the longitudinal and transverse directions. A deeper understanding
of the impacts of microstructural heterogeneity and anisotropy is also relevant to many
other areas of research, including hydrology and biology (e.g. O’Dea et al. 2015; Wang
et al. 2020).

We considered a simple model problem for a one-dimensional filter with chemical
adsorption at steady state. Measuring efficiency as the amount of solute removed by the
filter per unit time, we found that negative porosity gradients lead to a more efficient
filter than positive porosity gradients or filters of uniform porosity. Further, for a fixed
porosity, decreasing obstacle size or decreasing obstacle spacing lead to more efficient
filters than their respective constant or increasing counterparts. For a given porosity,
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a linearly decreasing obstacle spacing leads to a more efficient filter than a linearly
decreasing obstacle radius.

While we have defined efficiency to mean instantaneous performance, other factors are
also relevant to efficiency. Factors such as manufacturing costs, filter lifetime and fluid flux
output may also need to be considered. For example, if the coating on the solid obstacles
were very expensive then we may wish to minimise the amount of surface area of the solid
obstacles while maximising performance. Further, we assumed that the solid surface never
saturates with solute. However, in practice, the number of active sites where the solute can
attach to the solid will decrease as solute adsorbs, which may reduce the efficiency. This
saturating effect may be mitigated by ensuring that there are active sites throughout the full
length of the filter in order to maximise the chance a solute particle will come into contact
with an active site. The simple one-dimensional filter model we considered only predicts
initial or instantaneous filter efficiency and will therefore not predict the total amount of
contaminant filtered out over the life span of a filter if properties were to change with time.
However, the equations derived in this paper can readily be generalised to describe such
a case. All of these additional considerations to filter design lead to multiple optimisation
problems, requiring large parameter sweeps, for which a computationally inexpensive
model, such as this, is vital.

In our analysis we have assumed that the solute particles are negligibly small; for
particles that are not negligible in size relative to the smallest distances between adjacent
obstacles (choke points), we would also need to consider the effects of choking of the
filter due to particle build-up. Avoidance of such filter blockages requires sufficiently
wide longitudinal connectivity. Hence, a filter comprising obstacles whose radii increase
with depth is desirable, since such a gradient allows for more build-up of solute on the
solid obstacles near the inlet without choking the filter. This scenario was considered
in Dalwadi et al. (2016). However, in our case, we also have the possibility of varying
the spacing between obstacles. This additional degree of freedom allows us to respect a
positive gradient in the obstacle radii to mitigate the risks of blockages, while also having
either a negative gradient in the porosity or obstacle spacing to enable more efficient filters.

We have validated our results against limiting cases and previous homogenisation results
(cf. § 4.1); DNS for flow and transport in a broader range of relevant geometries would
provide further validation and may lead to additional insight, and should be the subject of
future work.

While it has been shown that the effective diffusivity for a porous medium with obstacles
on a uniform square grid was qualitatively similar to a porous medium with obstacles on
a uniform hexagonal grid for all porosities (Bruna & Chapman 2015), we expect that the
addition of anisotropy to the hexagonal problem, obtained by varying the longitudinal
obstacle spacing, will cause the permeabilities and effective diffusivities to diverge from
those determined here. For example, in certain limits, the hexagonal problem reduces to a
series of longitudinal channels while in other limits, the hexagonal problem reduces to a
series of transverse channels. Consequently in the latter limit, for the hexagonal structure,
the longitudinal permeability and diffusivity must vanish, while for the rectangular
structure the longitudinal permeability and diffusivity remain non-zero for all parameter
combinations provided R < 1/2 – that is, K 11 and D11 only vanish when R = 1/2. In
general, the hexagonal arrangement will mean that the longitudinal permeability will be
more sensitive to longitudinal obstacle spacing than it is for obstacles in a rectangular
structure. This is because with a hexagonal grid, altering the longitudinal spacing alters
both the longitudinal and transverse distances between neighbouring obstacles, while for
a rectangular grid, altering the longitudinal spacing does not alter the transverse distance
between obstacles. This illustrates that, when anisotropy is introduced into a problem, the

932 A34-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

93
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

od
le

ia
n 

Li
br

ar
ie

s 
of

 th
e 

U
ni

ve
rs

ity
 o

f O
xf

or
d,

 o
n 

10
 D

ec
 2

02
1 

at
 1

0:
03

:0
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.938
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


A homogenised model for a heterogeneous porous medium

microstructure becomes more significant than for isotropic problems. Modelling the filter
as a series of circles on a varying hexagonal grid will better describe granular materials
and this is the focus of future work.

It would be straightforward to generalise our approach to a three-dimensional porous
medium comprising spherical obstacles centred on a cuboid grid that is homogeneous
in two directions, but again allowing for arbitrary variation of both obstacle radius
and obstacle spacing in the longitudinal direction. We would expect the results to be
qualitatively similar to the two-dimensional problem considered here, except that the
connectivity would not vanish when obstacles touch. This feature would then mean that we
have non-zero permeability and diffusivity in all directions throughout the entire parameter
space.

A final point to note is that the spacing between obstacles may change when a filter is
subject to an effective stress. By coupling the model presented here to a law that relates the
spacing of the obstacles to the strain of the porous medium, we can derive homogenised
equations for a filter undergoing longitudinal deformation.

In summary, the results presented in this manuscript form a comprehensive framework
for describing the macroscropic transport and adsorption properties of a heterogeneous
porous medium. The model can be used to answer questions about the filtration
performance of such porous media and can be readily generalised to more complicated
scenarios than the specific examples considered here.
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Appendix A. Transport theorem

A.1. Generalised transport theorem
Firstly, we present a generalised form of the transport theorem which allows us to
interchange ∇x with integration over a cell of arbitrary geometry. Consider the region
α bounded by the surface ∂α, and suppose that this region moves and/or deforms with
time t. Denote the position of points on ∂α(t) by yb(t). The Reynolds transport theorem
states that

d
dt

∫
α(t)

ζ dV =
∫

α(t)

∂ζ

∂t
dV +

∫
∂α(t)

(
∂yb

∂t
· n
)

ζ dS, (A1)
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for an arbitrary vector field ζ (x̂, t), where dV signifies a volume integral, dS signifies a
surface integral, n is the outward normal to ∂α and the time derivative ∂yb/∂t can be
identified as the local velocity of ∂α(t).

In (A1), t plays the role of an arbitrary scalar parameter. In other words, (A1) remains
valid if we suppose that the region moves and/or deforms according to some other scalar
parameter ξ , in which case we have that

d
dξ

∫
β(ξ)

z dV =
∫

β(ξ)

∂z
∂ξ

dV +
∫

∂β(ξ)

(
∂yb

∂ξ
· n
)

z dS, (A2)

for an arbitrary vector field z(x̂, ξ), and where the domain β is a function of ξ . Note that
the derivative ∂yb/∂ξ can no longer be identified as a velocity in the traditional sense.

Now, consider several independent parameters as a vector ξ = ξiei, where we use the
summation convention and ei is the unit normal in the ith direction. The corresponding
divergence with respect to this vector is then

∇ξ ·
∫

β(ξ)

z dV =
(

ei
∂

∂ξi

)
·
∫

β(ξ)

(zjej) dV = ∂

∂ξi

∫
β(ξ)

zi dV. (A3)

Equation (A2) provides the following expression for the right-hand side of (A3):

∂

∂ξi

∫
β(ξ)

zi dV =
∫

β(ξ)

∂zi

∂ξi
dV +

∫
∂β(ξ)

(
∂yb

∂ξi
· n
)

zi dS. (A4)

Returning to vector notation, we can re-write this result as

∇ξ ·
∫

β(ξ)

z dV =
∫

β(ξ)

∇ξ · z dV +
∫

∂β(ξ)

n · G · z dS, (A5a)

where

G = ∂yb
i

∂ξj
eiej =

(
∂yb

∂ξ

)ᵀ
= (∇ξ ⊗ yb)ᵀ, (A5b)

is the Jacobian of the dependence of ∂β on ξ . Thus, (A5) defines the generalised transport
theorem.

A.2. Relationship to the macroscale perturbation to the normal
Applying the generalised Reynolds transport theorem (A5) to a vector field z(x, y), over
the periodic cell ωf , yields the following expression:

∇x ·
∫

ωf (x1)
z dSy =

∫
ωf (x1)

∇x · z dSy +
∫

∂ωs(x1)
ny · G · z dsy +

∫
∂ω(x1)

n� · G · z dsy,

(A6)
where n� is defined in relation to (3.34).
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Figure 10. (a,c) Effective diffusivities D11 and D22, respectively, against φ for fixed values of R ∈
{0.1, 0.2, 0.3, 0.4, 0.49}, with a varying according to (4.1). (b,d) Effective diffusivities D11 and D22,
respectively, against R for fixed values of φ ∈ {0.65, 0.7, 0.8, 0.9, 0.95}, with a varying according to (4.1).
For a given value of R, the minimum porosity φmin(R) is given by (4.1) with a = 2R. Note that D11 is non-zero
at φmin(R) for all values of φ (dot-dashed curve, a,b), whereas D22 vanishes at the corresponding φmin. Both D11
and D22 are as defined in (3.45a) and calculated using COMSOL Multiphysics. Both D11 and D22 tend to 1 as
φ → 1, which corresponds to the limit of free-space diffusion. The effective diffusivity is isotropic when a = 1
(solid black curves, a–d), in agreement with the results presented in Dalwadi et al. (2015). (e) The minimum
longitudinal diffusivity D11 = D�

11 for each value of R in figure 6(a) against the corresponding porosity φ = φ�

and (f ) the corresponding value of a = a� against R�. The latter is well predicted by the line a� = 2R�
√

π (blue
dot-dashed line) for small R�, becoming non-monotonic near R� = 0.5.

From periodicity, the final term on the right-hand side of (A6) vanishes, i.e.∫
∂ω(x1)

n� · G · z dsy = 0. (A7)

Using the definition of ny from (3.25c) and the definition of G from (A5b), we obtain

ny · G =
∂fs
∂yi

∂yb
i

∂xj

|∇y fs| ej, (A8)

using the summation convention and evaluated on y = yb(x), which is defined implicitly
through

fs(x, yb(x)) = 0. (A9)
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Since x = xjej is a parameter in each unit cell, differentiating (A9) with respect to xj
yields the relationship

∂fs
∂xj

+ ∂fs
∂yi

∂yb
i

∂xj
= 0, (A10)

evaluated on y = yb(x). Substituting the relationship (A10) into (A8) implies that

ny · G = − ∇x fs
|∇y fs| ≡ −N, (A11)

using the definition of N in (3.25e). Thus, the transport theorem (A6) becomes∫
ωf

∇x · z dSy = ∇x ·
∫

ωf

z dSy +
∫

∂ωs

N · z dsy. (A12)

Appendix B. Non-monotonicity of D11

In this appendix, we show the diffusivity tensor D (figure 10a–d) and examine the
non-monotonicity of the longitudinal diffusivity D11 for fixed R as φ varies. We consider
the minimum longitudinal diffusivity D�

11 and the unique value of φ� to which it
corresponds (figure 10e). Each value φ� corresponds to a particular pair a� and R�

(figure 10f ). Note that a� is approximately related to R� via a� = 2R�
√

π (figure 10(f ),
blue dot-dashed line). This linear relationship is a good fit for small R�, but slightly
overestimates the true value of a� for larger values of R�.
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