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Impact of pressure dissipation on fluid injection
into layered aquifers
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Carbon dioxide (CO2) capture and subsurface storage is one method for reducing
anthropogenic CO2 emissions to mitigate climate change. It is well known that
large-scale fluid injection into the subsurface leads to a buildup in pressure that
gradually spreads and dissipates through lateral and vertical migration of water.
This dissipation can have an important feedback on the shape of the CO2 plume
during injection, but the impact of vertical pressure dissipation, in particular, remains
poorly understood. Here, we investigate the impact of lateral and vertical pressure
dissipation on the injection of CO2 into a layered aquifer system. We develop a
compressible, two-phase model that couples pressure dissipation to the propagation
of a CO2 gravity current. We show that our vertically integrated, sharp-interface
model is capable of efficiently and accurately capturing water migration in a layered
aquifer system with an arbitrary number of aquifers. We identify two limiting cases
– ‘no leakage’ and ‘strong leakage’ – in which we derive analytical expressions for
the water pressure field for the corresponding single-phase injection problem. We
demonstrate that pressure dissipation acts to suppress the formation of an advancing
CO2 tongue during injection, reducing the lateral extent of the plume. The properties
of the seals and the number of aquifers determine the strength of pressure dissipation
and subsequent coupling with the CO2 plume. The impact of pressure dissipation
on the shape of the CO2 plume is likely to be important for storage efficiency and
security.

Key words: gravity currents, porous media

1. Introduction
Carbon capture and geological storage (CCS) involves capturing carbon dioxide

(CO2) and injecting it into saline aquifers for long-term storage. The goal of CCS is
to reduce CO2 emissions to the atmosphere in order to mitigate climate change
(e.g. IPCC 2005). To achieve a meaningful reduction in CO2 emissions, very
large quantities of CO2 would need to be captured and stored. Two key physical
mechanisms limit the potential storage capacity of a particular aquifer: pressure
buildup and CO2 migration (Szulczewski et al. 2012). Pressure buildup limits capacity
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because the pressure in the target aquifer will increase during injection. The local
geology and geomechanics impose a maximum allowable pressure that, if exceeded,
could lead to fracturing or fault activation, enabling leakage of CO2 into overlying
aquifers. Migration limits capacity because, after injection, the buoyant CO2 will
slowly rise, spread and migrate relative to the denser water. The injection scenario
must be designed such that this CO2 will not migrate outside of its designated
storage area. Pressure buildup and migration have been studied extensively, but
almost exclusively as separate problems due to computational limitations and the
widespread view that these processes are essentially independent. Here, we develop
a new model that captures both processes simultaneously and we use it to show that
they are inherently coupled.

A saline aquifer is a layer of rock with a relatively high permeability, such as
sandstone, that is bounded above and below by sealing layers (‘seals’), which are
layers of rock with much lower permeability, such as shale or mudstone. Aquifers
range in thickness from a few metres to a few hundreds of metres; seals are typically
about an order of magnitude thinner, from a few centimetres to a few tens of metres.
Both aquifers and seals extend laterally over tens to hundreds of kilometres, are nearly
horizontal (slopes of at most a few degrees) and are saturated with saline groundwater
(‘water’). A typical sedimentary basin comprises many repetitions of this fundamental
sequence (seal–aquifer–seal) over a total thickness of a few kilometres.

Most previous studies of CO2 migration are at the aquifer scale, focusing on
the target aquifer only and taking the associated seals to be perfectly impermeable.
In this setting, it is common to assume that the CO2 will remain separated from
the water by a sharp interface (the capillary pressure being much smaller than the
hydrostatic pressure) and that the vertical pressure variation within both fluids will
remain essentially hydrostatic (the vertical dimension of the flow being much smaller
than the horizontal one). These assumptions together imply that the buoyant CO2
will take the form of a coherent plume known as a gravity current (Huppert &
Woods 1995). The resulting models are convenient for analytical and computational
analysis because they eliminate the vertical dimension, leading to a one-dimensional
(1-D; or two-dimensional, 2-D) flow problem in the lateral plane. Gravity-current
models (also known as ‘vertically integrated’ models) have been studied extensively,
yielding a variety of important qualitative insights as well as quantitative analytical
and semi-analytical predictions (e.g. Nordbotten, Celia & Bachu 2005; Nordbotten &
Celia 2006b; Hesse et al. 2007; Gasda, Nordbotten & Celia 2009; Mathias et al. 2009;
Juanes, MacMinn & Szulczewski 2010; MacMinn, Szulczewski & Juanes 2010; Pegler,
Huppert & Neufeld 2014; Zheng et al. 2015; Golding, Huppert & Neufeld 2017).
However, the majority of these studies provide no insight on pressure buildup or
dissipation because they assume that the fluids and the rock are incompressible. Two
noteworthy exceptions are the work of Mathias et al. (2009, 2011) and that of Hewitt,
Neufeld & Balmforth (2015). The former considered the impact of compressibility
on CO2 injection, pressure buildup and lateral pressure dissipation within an isolated
aquifer; the latter considered the impact of poroelastic deformation on the same
problem, but for a system with incompressible constituents.

The pressure perturbation due to CO2 injection travels orders of magnitude faster
and farther than the CO2 itself (e.g. Nicot 2008; Birkholzer, Zhou & Tsang 2009;
Chang, Hesse & Nicot 2013). As a result, most previous studies of pressure buildup
consider much larger, basin-scale systems that allow for pressure dissipation via
water migration both laterally within aquifers and vertically across seals. Fluid and
rock compressibility are central to the rate of pressure buildup and dissipation in
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these basin-scale systems. Because of the importance of both vertical and lateral
flow, models for pressure dissipation are typically fully 2-D (or three-dimensional,
3-D) and are therefore less analytically tractable and more computationally expensive
than gravity-current models. The primary computational challenge for these models
is resolving the fine-scale features of the long, thin CO2 plume in what is necessarily
a large computational domain. As a result, these models typically produce a fairly
coarse view of the evolution of the CO2 plume (e.g. Birkholzer et al. 2009). Many
studies of pressure buildup simplify the problem by replacing CO2 injection with
water injection, reducing the two-phase flow problem to a single-phase flow problem.
This simplification, which greatly reduces the computational cost, is motivated by
the argument that the features of pressure buildup and dissipation away from the
target aquifer depend mainly on the rate, duration and location of injection, but
are relatively insensitive to the properties of the injected fluid (Nicot 2008; Nicot,
Hosseini & Solano 2011; Chang et al. 2013). However, the resulting models cannot
be used to predict anything about the CO2 plume or its coupling with pressure
buildup and dissipation.

Studies of pressure buildup and dissipation have consistently shown that vertical
pressure dissipation, in particular, has a very strong impact on both overall pressure
buildup and lateral pressure propagation (Birkholzer et al. 2009; Chang et al. 2013).
This implies that vertical pressure dissipation should also have a strong impact on
the shape of the CO2 plume. Here, we show that the shape of the CO2 plume is
indeed strongly coupled to vertical pressure dissipation and, further, that this coupling
is two-way: vertical pressure dissipation near the injection well is itself influenced by
the shape of the CO2 plume. We do this by developing a novel model that extends
the traditional gravity-current approach to allow for compressibility, weak vertical flow
and vertical water migration in a domain comprising an arbitrarily extensive sequence
of aquifers and seals. In § 2, we outline the derivation of the model. The model is
computationally inexpensive, but sufficiently complex that analytical solutions are not
readily available; in § 3, we outline our numerical scheme and then benchmark our
model against 1-D analytical solutions and a full 2-D numerical solution for a single-
phase model problem (water injection). We then apply our model to CO2 injection and
conduct a detailed exploration of the associated parameter space. In § 4, we conclude
by considering the implications our results for CCS.

2. Theoretical model
The geological setting for our model is a sequence of Nz horizontal aquifers

alternating with Nz + 1 horizontal seals (figure 1). For simplicity, we assume that all
aquifers have the same uniform thickness H, porosity φ and isotropic permeability
k, and that all of the thinner and less-permeable intervening seals have the same
uniform thickness b (b�H), porosity φs and isotropic permeability ks (ks� k). The
system is bounded above and below by impermeable seals, and we count aquifers
and seals from the bottom up. As a result: the deepest and shallowest seals are seals
1 and Nz + 1, respectively; the deepest and shallowest aquifers are aquifers 1 and Nz,
respectively; and, in general, aquifer n is bounded by seals s and s+ 1.

In the context of this geological setting, we study the flow of two immiscible phases
of different density: a dense, wetting phase and a buoyant, non-wetting phase. The
wetting phase is groundwater (‘water’); we refer to the buoyant, non-wetting phase as
‘gas’ for simplicity, but it could be natural gas, oil or supercritical CO2.

We denote fluid-phase identity with a subscript α, with α = w for water and
α = g for gas (or any other buoyant, non-wetting phase). We account for the weak
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Seal s + 2

Seal s + 1

Seal s - 1

Seal s

Layer n + 1
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zn+1,B
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b

b

FIGURE 1. (Colour online) A section of our model system, which comprises a sequence
of aquifers of thickness H and seals of thickness b. The gas-saturated region is show in
red.

compressibility of both fluids by allowing their densities ρα to vary linearly with
pressure about a reference state

ρα(p)= ρ0
α

[
1+ cα(pα − p0)

]
, (2.1)

where pα is the pressure of phase α, ρ0
α is the density of phase α at reference pressure

p0 and cα is the compressibility of phase α about p0 (cα ≡ (1/ρ0
α)(dρα/dp)|p0).

For the range of pressures typically experienced during both natural fluid migration
and subsurface-engineering operations, we expect that cw(pw − p0)� 1 and therefore
that ρw ≈ ρ0

w. We take advantage of this simplification in the analysis below. We do
not make this assumption for gas since cg� cw.

We next develop a model for flow of gas and water in aquifer n. To enable vertical
and lateral pressure dissipation, we allow for water exchange with the aquifers above
and below via flow through the intervening seals (‘water leakage’). Importantly, we
do not allow for gas exchange across the seals (‘gas leakage’). For a competent seal,
gas leakage is blocked by a large capillary entry pressure due to the fine-grained
microstructure of the seal rock. However, gas leakage can be enabled by injection
pressures that exceed this entry pressure, by the presence of heterogeneities in the seal
with much lower entry pressure (e.g. sandy patches) or by focused leakage pathways
such as faults or fractures. We will address gas leakage in detail in future work.

For simplicity, we focus here on a planar (2-D) model problem in the x–z plane,
with z the vertically upward coordinate and x the horizontal (lateral) coordinate
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218 L. T. Jenkins, M. Foschi and C. W. MacMinn

(figure 1). We assume symmetry along the y direction (into the page). We denote
the vertical position of the top and bottom of aquifer n by zn,T and zn,B, respectively,
such that zn,T − zn,B ≡H.

2.1. Flow in aquifer n
We begin by assuming that the two fluids are strongly segregated by gravity, such that
there exists a region saturated primarily with gas above a region saturated exclusively
with water (figure 1). The saturation of both fluids would vary in space and time
within these regions; however, when capillarity is weak relative to buoyancy, these
variations are localised to a relatively thin ‘capillary fringe’ that separates a region
containing mostly mobile gas from a region containing mostly mobile water, both
at nearly constant and uniform saturation within these regions. The evolution of the
capillary fringe does not have a leading-order impact on the motion of the gas plume
(Golding et al. 2011). We therefore assume that the gas region and the water region
are separated by a sharp interface, and that the gas region contains mobile gas with a
uniform and constant saturation of residual water. These assumptions are standard for
large-scale gas injection and migration (Nordbotten et al. 2005; Nordbotten & Celia
2006b; Hesse et al. 2007; Gasda et al. 2009; Mathias et al. 2009; Juanes et al. 2010;
MacMinn et al. 2010).

As discussed in more detail below, we assume that the residual water exists in a
network of connected wetting films and bridges that, although immobile, can conduct
a net vertical flow of water. We further assume that the water region in each aquifer
contains only water. Residual gas in the water region can be included in a relatively
straightforward way (e.g. Kochina, Mikhailov & Filinov 1983; Barenblatt 1996; Hesse,
Orr Jr & Tchelepi 2008; Gasda et al. 2009; Juanes et al. 2010; MacMinn et al. 2010),
but we neglect it here for simplicity. Lastly, we assume that the seals contain only
water.

2.1.1. Gas in aquifer n
Conservation of mass for gas in aquifer n is given by

∂

∂t
(ρgφsg)+∇ · (ρgqg)= Ig, (2.2)

where sg is the saturation of gas, qg is the Darcy flux of gas, and Ig is a source term
that prescribes the local mass rate of gas injection per unit volume. The Darcy flux
of gas is given by Darcy’s law

qg =−
kkrg

µg
(∇pg + ρggêz), (2.3)

where krg is the relative permeability to gas flow, µg is the dynamic viscosity of gas,
which we take to be constant and uniform, pg is the gas pressure, g is the body force
per unit mass due to gravity, and êz is the unit vector in the positive z direction.

We now assume that the gas is in vertical equilibrium, meaning that the vertical
component of gas flow is negligible relative to the horizontal components (qg,z �
qg,x). This standard assumption is motivated by the long-and-thin aspect ratio typical
of these flows, and can be justified rigorously as the leading-order problem under
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a lubrication-type approximation (Yortsos 1995; de Loubens & Ramakrishnan 2011).
The vertical pressure distribution in the gas is therefore nearly hydrostatic

∂pg

∂z
≈−ρgg, zn,I 6 z 6 zn,T, (2.4)

where zn,I(x, t) is the vertical position of the gas–water interface. We then integrate
(2.4) to arrive at an expression for the vertical pressure distribution in the gas. In
doing so, we neglect variations in density due to variations in phase-static pressure
over the span of a single aquifer – that is, we assume that ρ0

g gHcg� 1. We make use
of this assumption repeatedly below. The resulting pressure profile is

pg(x, z, t)≈ pn(x, t)− ρn
g g[z− zn,I(x, t)], zn,I 6 z 6 zn,T, (2.5)

where pn(x, t) is the pressure at the interface, ρn
g(x, t) is the vertically averaged

gas density, and hn(x, t) = zn,T − zn,I(x, t) is the thickness of the gas layer. Note
that we neglect the capillary pressure at the gas–water interface relative to typical
phase-static pressures, pc� ρ0

g gH, taking the water pressure and the gas pressure to
be approximately equal along the interface within each aquifer. This is a standard
assumption (e.g. Nordbotten & Celia 2006a; Hesse et al. 2007; Juanes et al. 2010).
A constant and uniform capillary pressure can easily be included, but would not
change the results below.

Equation (2.5) implies that the lateral pressure gradient in the gas is given by

∂pg

∂x
≈ ∂pn

∂x
− ρn

g g
∂hn

∂x
, zn,I 6 z 6 zn,T, (2.6)

where we have again neglected terms of order ρ0
g gHcg� 1. Equation (2.6) implies that

the lateral gas flux is given by

qg,x(x, z, t)≈−kkrg

µg

(
∂pn

∂x
− ρn

g g
∂hn

∂x

)
, zn,I 6 z 6 zn,T, (2.7)

where krg is the relative permeability to gas in the gas region. Relative permeability is
traditionally taken to be a nonlinear and hysteretic constitutive function of saturation,
krg(sg); however, having assumed that sg is constant and uniform within the gas region
(see beginning of § 2.1), we take krg to be constant and uniform. There is no gas below
the interface, so qg,x = 0 for zn,B 6 z< zn,I .

We next integrate (2.2) vertically over the full thickness of aquifer n,∫ zn,T

zn,B

∂

∂t
(ρgsgφ) dz+

∫ zn,T

zn,B
∇ · (ρgqg) dz=

∫ zn,T

zn,B
Ig dz. (2.8)

This integration procedure is well established (e.g. Bear 1972; Gasda et al. 2009),
so we summarise the key results while highlighting the non-standard aspects of our
model.

The first term on the left-hand side of (2.8) becomes∫ zn,T

zn,B

∂

∂t
(ρgφsg) dz ≈ ∂

∂t
(ρn

gφsghn)

≈ ρn
gφsg

[(
cr +

ρ0
g

ρn
g

cg

)
hn ∂pn

∂t
+ ∂hn

∂t

]
, (2.9)
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where sg is now the constant and uniform saturation of gas in the gas region,
cr ≡ (1/φ)(dφ/dp) is the rock (matrix) compressibility, and we have again assumed
that ρ0

g gHcg � 1 (Mathias et al. 2011). Note that the density ratio multiplying
cg is usually approximated as unity, but this approximation introduces errors in
mass conservation of order cg(pg − p0), which is not negligible when the gas is
moderately compressible (e.g. in the context of methane migration). Note also that
the introduction of rock compressibility to capture the impact of matrix deformation
on pressure propagation is a standard and very widely used result from groundwater
hydraulics. This approach is strictly valid under the assumptions of negligible lateral
strain (i.e. expansion or contraction that is primarily vertical) and constant vertical
effective stress (i.e. dominated by gravity), and conveniently decouples pressure
propagation from the full machinery of poroelasticity and geomechanics (e.g. van der
Kamp & Gale 1983; Green & Wang 1990).

The second term on the left-hand side of (2.8) becomes

∫ zn,T

zn,B
∇ · (ρgqg) dz = ∂

∂x

(∫ zn,T

zn,B
ρgqg,x dz

)
+ (ρgqg,z)

∣∣∣∣∣
zn,T

zn,B

≈ ∂

∂x

[
−ρn

g hn kkrg

µg

(
∂pn

∂x
− ρn

g g
∂hn

∂x

)]
, (2.10)

where we have used (2.3) and (2.6), and again assumed that ρ0
g gHcg� 1. The vertical

gas fluxes at z= zn,B and z= zn,T vanish because we do not allow gas leakage.
Recombining (2.9) and (2.10) with (2.8), we have

ρn
gφsg

[
(cr +

ρ0
g

ρn
g

cg)hn ∂pn

∂t
+ ∂hn

∂t

]
− ∂

∂x

[
ρn

g hnλg

(
∂pn

∂x
− ρn

g g
∂hn

∂x

)]
= In

g H, (2.11)

where λg ≡ kkrg/µg is the mobility of gas in the gas region and In
g is the vertically

averaged mass injection rate of gas per unit volume into aquifer n.

2.1.2. Water in aquifer n
Conservation of mass for the water in aquifer n is given by

∂

∂t
(ρwφsw)+∇ · (ρwqw)= Iw, (2.12)

where sw is the water saturation, qw is the Darcy flux of water and Iw is a source term
that prescribes the local mass rate of water injection per unit volume. The Darcy flux
of water is given by Darcy’s law

qw =−
kkrw

µw
(∇pw + ρwgêz), (2.13)

where krw is the relative permeability to water flow, µw is the dynamic viscosity of
water and pw is the water pressure. The relative permeability to water flow is again
typically taken to be a function of water saturation, krw(sw); here, our assumptions of
no gas in the water region (sw = 1 for zn,B < z < zn,I) and a constant and uniform
saturation of residual water in the gas region (sw= 1− sg for zn,I < z< zn,T) imply that
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krw = 1 in the water region and krw = k?rw < 1 in the gas region, where k?rw is constant
and uniform. Note that we also take µw to be constant and uniform.

We assumed above that the gas is in vertical equilibrium, meaning that the vertical
component of the gas flux is negligible relative to the horizontal component, such that
the vertical pressure distribution is approximately hydrostatic (2.4). Conversely, for the
water we expect a weak but non-negligible vertical flow through the aquifers and the
seals. For aquifers containing gas, this upward flow of water must also pass through
the connected network of residual water films in the gas region before entering the
seal, although the associated relative permeability may be very low (see § 3.4).

To allow for weak vertical flow of water, we adopt the ansatz that qw,z has the
simplest continuous vertical flow structure that allows for different vertical fluxes
at the bottom and top of the aquifer: piecewise linear in z. Nordbotten & Celia
(2006a) suggested this approach in the context of flow near a well in an aquifer with
impermeable seals. Here, we extend this approach to account for the gas region and
the permeable seals by assuming that qw,z has the following form:

qw,z(x, z, t)≈

qn,B
w,z +

(
z− zn,B

zn,I − zn,B

)
(qn,T

w,z − qn,B
w,z), zn,B 6 z< zn,I,

qn,T
w,z, zn,I 6 z 6 zn,T,

(2.14)

such that qw,z in aquifer n varies linearly from to qn,B
w,z(x, t) at the bottom seal to

qn,T
w,z(x, t) at the gas–water interface, and is then uniform and equal to qn,T

w,z(x, t) from
the gas–water interface to the top seal. This structure implies that water flow in the
gas region is primarily vertical, neglecting lateral transport through the gas region
relative to lateral transport within the water region. Note that we do not assume
anything about the magnitude of the vertical flux or its variation in x or t, or about
the horizontal flux in the water region – these aspects emerge naturally from Darcy’s
law and conservation of mass. We discuss the limitations of this assumed structure
at the end of § 2.

Equation (2.14) implies that the vertical pressure variation within the water is given
by

∂pw

∂z
≈


−ρwg− µw

k

[
qn,B

w,z +
(

z− zn,B

zn,I − zn,B

)
(qn,T

w,z − qn,B
w,z)

]
, zn,B 6 z< zn,I,

−ρwg− µw

kk?rw

qn,T
w,z, zn,I 6 z 6 zn,T .

(2.15)

We then integrate this expression to arrive at

pw(x, z, t)≈



pn + (zn,I − z)
{
ρn

wg

+ µw

2k

[
(qn,T

w,z + qn,B
w,z)+

(
z− zn,B

zn,I − zn,B

)
(qn,T

w,z − qn,B
w,z)

]}
, zn,B 6 z< zn,I,

pn − (z− zn,I)

{
ρn

wg+ µw

kk?rw

qn,T
w,z

}
, zn,I 6 z 6 zn,T,

(2.16)
where pn is the pressure along the gas–water interface, which we assume to be the
same for both water and gas, as discussed above. As with the derivation for gas, we
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have neglected variations in density due to variations in hydrostatic pressure over the
span of a single aquifer – that is, we have assumed that ρ0

wgHcw� 1. Note that pw is
parabolic in z in the water region, linear in z in the gas region, and continuous in z
throughout the domain, including across the gas–water interface. We now differentiate
(2.16) with respect to x to give the lateral pressure gradient, and thereby the lateral
water flux, as presented above for gas. This procedure is straightforward, although
more laborious than for gas because pn, zn,I , qn,T

w,z and qn,B
w,z all vary in x. The result

is

qw,x(x, z, t) ≈ − k
µw

(
∂pn

∂x
− ρn

wg
∂hn

∂x

)
− 1

2

{
(zn,I − z)

[
∂

∂x
(qn,T

w,z + qn,B
w,z)+

(
z− zn,B

zn,I − zn,B

)
∂

∂x
(qn,T

w,z − qn,B
w,z)

]
− ∂hn

∂x

[
(qn,T

w,z + qn,B
w,z)+

(
z− zn,B

zn,I − zn,B

)2

(qn,T
w,z − qn,B

w,z)

]}
, (2.17)

for zn,B 6 z < zn,I , and recall that we neglect lateral flow of water in the gas region
(i.e. qw,x = 0 for zn,I 6 z 6 zn,T).

Proceeding as above, we next integrate (2.12) vertically over the full thickness of
aquifer n, ∫ zn,T

zn,B

∂

∂t
(ρwφsw) dz+

∫ zn,T

zn,B
∇ · (ρwqw) dz=

∫ zn,T

zn,B
Iw dz. (2.18)

Much like for gas, the first term on the left-hand side of (2.18) becomes∫ zn,T

zn,B

∂

∂t
(ρwφsw) dz ≈ ∂

∂t
[ρn

wφ(H − hn)+ ρn
wφ(1− sg)hn]

≈ ρn
wφ

[
(cr + cw)(H − sghn)

∂pn

∂t
− sg

∂hn

∂t

]
, (2.19)

where, unlike for gas, we have assumed that cw(pw− p0)� 1 and therefore that ρw≈
ρ0

w, as discussed above.
The second term on the left-hand side of (2.18) becomes

∫ zn,T

zn,B
∇ · (ρwqw) dz = ∂

∂x

(∫ zn,T

zn,B
ρwqw,x dz

)
+ (ρwqw,z)

∣∣∣∣∣
zn,T

zn,B

≈ ∂

∂x

{
−ρ0

w
k
µw
(H − hn)

[
∂pn

∂x
− ρ0

wg
∂hn

∂x

]
− ρ0

w
∂

∂x

[
1
6
(H − hn)2(qn,B

w,z + 2qn,T
w,z)

]}
+ ρ0

w(q
n,T
w,z − qn,B

w,z), (2.20)

where we have neglected horizontal flow of water in the gas region (qw,x≈ 0 for zn,I <

z< zn,T) and again assumed that ρ0
wgHcw� 1 and that ρw ≈ ρ0

w. Recombining (2.19)
and (2.20) with (2.18), we have
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φ

[
(H − sghn)(cr + cw)

∂pn

∂t
− sg

∂hn

∂t

]
− ∂

∂x

{
λw(H − hn)

[
∂pn

∂x
− ρwg

∂hn

∂x

]
+ 1

6
∂

∂x

[
(H − hn)2(qn,B

w,z + 2qn,T
w,z)
]}=−(qn,T

w,z − qn,B
w,z)+

In
wH
ρw

, (2.21)

where λw≡ k/µw is the mobility of water in the water region and In
w is the vertically

averaged mass injection rate of water per unit volume into aquifer n.
Equations (2.11) and (2.21) are 2Nz coupled nonlinear partial differential equations

(PDEs) in pn and hn. For a system with permeable seals, the Nz aquifers are coupled
by vertical pressure dissipation and the system is closed via expressions for the
vertical water fluxes qn,B

w,z and qn,T
w,z in terms of pn and hn.

For a system with impermeable seals, the aquifers are uncoupled and flow and
pressurisation are constrained to the injection aquifer. With impermeable seals and
no gas, equation (2.21) then reduces to the classical groundwater-flow equation from
groundwater hydraulics (Bear 1979) (see § 3.1). With impermeable seals and gas,
equations (2.11) and (2.21) instead reduce to the widely used model for a gravity
current in a horizontal aquifer for an incompressible system (e.g. Bear 1972; Huppert
& Woods 1995), and to the model of Mathias et al. (2009) for a compressible system
(see § 3.3).

2.2. Coupling the aquifers with vertical fluxes
The approach of coupling multiple aquifers with vertical fluxes across the intervening
seals was previously suggested by Hunt (1985). For incompressible and strictly
vertical flow of water through seals, conservation of mass requires that the mass
flux of water into seal s from aquifer n − 1 must equal the mass flux of water
out of seal s and into aquifer n at the same position x and time t. Taking the
water density to be approximately uniform and constant throughout the system
(cw(pw− p0)� 1 H⇒ ρw≈ ρ0

w), there must then be a single water flux qs
w,z associated

with each seal s,
qs

w,z(x, t)= qn−1,T
w,z (x, t)= qn,B

w,z(x, t). (2.22)

We calculate this flux via Darcy’s law

qs
w,z =−

ks

µw

(
pn,B

w − pn−1,T
w

b
+ ρwg

)
, (2.23)

where our assumption of no gas in the seals implies that krw = 1, and where pn,B
w =

pw(zn,B) and pn−1,T
w = pw(zn−1,T). We write these unknown pressures in terms of the

fluxes through the seals by combining (2.16) with (2.22)

pn−1,T
w = pn−1 − hn−1

[
ρwg+ µw

kk?rw

qs
w,z

]
, (2.24a)

pn,B
w = pn + (H − hn)

[
ρwg+ µw

2k
(qs+1

w,z + qs
w,z)
]
. (2.24b)

Combining (2.23) and (2.24) and rearranging, we arrive at(
H − hn

2λw

)
qs+1

w,z +
(

hn−1

λ?w
+ b
λs

w

+ H − hn

2λw

)
qs

w,z

=−[pn − pn−1 + ρ0
wg(hn−1 + b+H − hn)], (2.25)
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where λ?w = kk?rw/µw is the mobility of water in the gas regions of the aquifers and
λs= ks/µw is the mobility of water in the seals. Equation (2.25) is a linear system of
Nz− 1 coupled algebraic equations in the Nz− 1 unknown fluxes qs

w,z for s= 2 · · ·Nz,
from which we can solve for qs

w,z in terms of pn and hn. Recall that the bottom-most
and top-most seals are impermeable, so that q1

w,z = qNz+1
w,z = 0.

2.3. Boundary and initial conditions
We consider a system comprised of Nz aquifers and Nz + 1 seals, and which extends
horizontally from x=−Lx/2 to x= Lx/2. We assume that the system is initially fully
saturated with water (no gas), and that the initial pressure distribution is hydrostatic.
For simplicity, we also assume that the pressure at the lateral boundaries remains
hydrostatic throughout; this implies that our results are independent of lateral domain
size for scenarios where the system is sufficiently laterally extensive that changes in
pressure due to injection never reach the boundaries, which is true for our reference
case (see figure 2 below).

For injection of phase α into the horizontal centre of aquifer n at a mass flow rate
Ṁn
α(t) per unit length into the page, the relevant vertically integrated source term In

α

can be written

In
α =

Ṁn
α(t)
H

δ(x), (2.26)

where δ(x) is the Dirac delta function.

2.4. Non-dimensionalisation

We consider the injection of gas at a mass flow rate Ṁ per unit length into the page
for a time T . This scenario motivates the following characteristic scales for length,
pressure and vertical flux:

L≡ ṀT
2φsgρ0

g H
, P ≡ φL

2

λwT
= ṀL

2λwsgρ0
g H

and Qz ≡ λ
s
wP
b
. (2.27a−c)

The characteristic length L is the half-width of an incompressible plug (box) of gas of
mass ṀT per unit length into the page. The characteristic pressure P is the pressure
drop associated with a Darcy flux φL/T of water over a distance L. The characteristic
vertical flux Qz is the vertical flux of water associated with a characteristic pressure
drop P across a seal of thickness b.

We use the above scales in combination with existing parameters to define the
following dimensionless quantities:

x̃≡ x
L
, t̃≡ t

T
, h̃≡ h

H
, p̃≡ p

P
, q̃≡ q

Qz
,

b̃≡ b
H
, ρ̃α ≡ ρα

ρ0
g

and Ĩn
α ≡

2LHIn
α

Ṁ
.

 (2.28a−h)

We then also introduce the following dimensionless groups:

Ncw ≡ cwP, (2.29a)
Rcw ≡ cr/cw, (2.29b)
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Rcf ≡ cg/cw, (2.29c)
RA ≡L/H, (2.29d)
Rd ≡ ρ0

g/ρ
0
w, (2.29e)

Ng ≡ ρ0
wgH/P, (2.29f )

M≡ λg/(sgλw), (2.29g)
Λs

w ≡ λs
wH/(λwb). (2.29h)

The first three of these groups capture the effects of the compressibility: the
‘compressibility number’ Ncw measures the overall importance of compressibility
within the system, whereas the two compressibility ratios Rcw and Rcf compare
the compressibilities of the various phases. The aspect ratio RA compares the
characteristic length of the plume to the aquifer thickness, capturing the importance
of horizontal-to-vertical flow within and around the gas plume. The density ratio Rd
compares the fluid densities and the ‘gravity number’ compares hydrostatic pressure
to the characteristic injection pressure, such that the grouping (1 − Rd)Ng measures
the importance of buoyancy relative to injection. The mobility ratio M compares the
mobility of gas within the aquifer to that of water, incorporating the gas saturation
for convenience. Lastly, the ‘leakage number’ Λs

w measures the resistance to vertical
flow through the aquifers relative to the seals, such that the grouping R2

AΛ
s
w measures

the importance of vertical pressure dissipation relative to lateral pressure dissipation.

2.5. Model summary
Dropping the tildes, we can now write our coupled partial differential system in
dimensionless form as

Ncw(Rcwρ
n
g + Rcf )hn ∂pn

∂t
+ ρn

g
∂hn

∂t
−M

∂

∂x

[
ρn

g hn

(
∂pn

∂x
− ρn

g RdNg
∂hn

∂x

)]
= In

g , (2.30)

and

Ncw(Rcw + 1)(1− sghn)
∂pn

∂t
− sg

∂hn

∂t
− ∂

∂x

{
(1− hn)

[
∂pn

∂x
−Ng

∂hn

∂x

]
+ Λs

w

6
∂

∂x
[(1− hn)2(qs

w,z + 2qs+1
w,z )]

}
=−RA

2Λs
w(q

s+1
w,z − qs

w,z)+ sgRdIn
w, (2.31)

with
ρn

g(p
n)= 1+NcwRcf (pn − p0), (2.32)

and

Λs
w

2
(1− hn)qs+1

w,z +
[
Λs

w

k?rw

hn−1 + 1+ Λ
s
w

2
(1− hn)

]
qs

w,z

=−[pn − pn−1 +Ng(hn−1 + b+ 1− hn)]. (2.33)

For a system with Nz aquifers, equations (2.30) and (2.31) provide 2Nz coupled PDEs
enforcing conservation of mass for gas and for water, respectively, in each aquifer
n = 1 · · · Nz. Equation (2.32) is the dimensionless form of the linear constitutive
relationship for gas density. Lastly, equation (2.33) is a linear system of Nz − 1
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algebraic equations in the dimensionless vertical fluxes of water across each interior
seal, qs

w,z for s= 2 · · ·Nz, where we impose q1
w,z = qNz+1

w,z = 0.
We assume that there is initially no gas in the system, hn(x, t = 0) = 0, and we

ensure that the gas never reaches the lateral boundaries. We assume that the pressure
is initially hydrostatic and that the pressure at the boundaries remains hydrostatic

pn(x, t= 0)= pn(−Lx/2, t)= pn(Lx/2, t)= p0 −Ng[n+ (n− 1)b], (2.34)

recalling that the pressures pn are the pressures at the gas–water interface in each
aquifer, which is the top of the aquifer in the absence of gas, and that p0 is the initial
pressure at the bottom of aquifer 1.

Vertical pressure dissipation does not appear explicitly in (2.30) because the gas is
limited to vertical equilibrium, which is valid for RA� 1. Vertical pressure dissipation
is responsible for two of the terms in (2.31), both of which are multiplied by Λs

w. The
term on the right-hand side measures the net mass of water that enters layer n through
seals s and s+ 1, and its dimensionless coefficient measures the importance vertical
pressure dissipation relative to lateral pressure dissipation: a pressure difference of size
P over a lateral distance L would drive a flow rate Ql∼λwPH/L laterally through the
aquifer and a flow rate Qs ∼ λs

wPL/b vertically across the associated seals. The ratio
of these flow rates is Qs/Ql = λs

wL2/(λwHb) = R2
AΛ

s
w, highlighting that the extensive

contact area between the aquifers and the seals enables vertical pressure dissipation
to have a strong impact on the pressure field even when λs

w � λw (Λs
w � 1). The

term proportional to Λs
w on the left-hand side is a consequence of conservation of

mass, introducing weak lateral variations in qw,x to compensate for vertical variations
in qw,z. Our assumed piecewise-linear structure for the vertical flux determines the
specific structure of this term, but it will always be proportional to Λs

w and involve
the horizontal divergence of some function of hn times the fluxes through the seals.
Our model is valid as long as this term is indeed a weak perturbation to horizontal
flow, meaning that Λs

w� 1. In general, this term is clearly less important than the one
proportional to R2

AΛ
s
w since RA� 1, and could safely be neglected, but we retain it to

preserve the consistency of our formulation.

3. Results
For illustrative purposes, we consider a reference scenario involving fluid injection

into the central aquifer (n = 4) of a seven-aquifer system (Nz = 7). We choose rock
properties consistent with sandstone aquifers and mudstone seals and we choose fluid
properties consistent with water and CO2 at a depth of ∼1 km, where our reference
pressure is the pressure at the bottom of aquifer 1. We consider an injection rate
of ∼1 Mt per year distributed along a 30 km long array of injection wells for a
period of 10 years (Szulczewski et al. 2012). Based on this scenario, we choose a
set of reference values for our dimensional parameters and then use these to calculate
corresponding reference values for our dimensionless parameters. Both sets of values
are reported in table 1. We use these values in the rest of this study except where
noted otherwise.

In the context of this reference scenario, we consider the predictions of our model
for several test problems: (i) water injection with impermeable seals, which allows
us to verify our model against a classical analytical solution; (ii) water injection
with permeable seals, which allows us to benchmark our model against a fully 2-D
groundwater-flow model; (iii) gas injection with impermeable seals, which allows us
to verify our model against previous results for gas injection; and (iv) gas injection
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Parameter Symbol Value

(a)
Number of aquifers Nz 7
Horizontal extent Lx 100 km
Aquifer thickness H 10 m
Aquifer porosity φ 0.3
Aquifer permeability k 10−13 m2

Seal thickness b 1 m
Seal permeability ks 10−18 m2

Rock compressibility cr 3.0× 10−11 Pa−1

Reference pressure p0 10 MPa

Water viscosity µw 8× 10−4 Pa s
Water density ρw 1000 kg m−3

Water compressibility cw 4.5× 10−10 Pa−1

Saturation of water in gas region swr 0.2
Relative permeability of water in gas region k?rw 0.01

Gas viscosity µg 4× 10−5 Pa s
Gas density ρ0

g 700 kg m−3

Gas compressibility cg 1.5× 10−8 Pa−1

Saturation of gas in gas region sg 0.8
Relative permeability of gas in gas region krg 1

Mass injection rate Ṁ 10−3 kg s−1 m−1

Injection time T 10 years

(b)
Compressibility number Ncw 3.02× 10−5

Rock-to-water compressibility ratio Rcw 6.67× 10−2

Gas-to-water compressibility ratio Rcf 33.3
Aspect ratio RA 9.39
Density ratio Rd 0.7
Gravity number Ng 1.46
Mobility ratio M 25
Water-leakage strength Λs

w 10−4

Seal-to-aquifer thickness ratio b̃ 0.1
Horizontal extent L̃x 1062

TABLE 1. Reference parameter values. The dimensionless values (b) are calculated
directly from the dimensional values (a).

with permeable seals, which allows us to study the impact of pressure dissipation on
gas injection.

In all cases, we solve our model numerically by discretising in space using a
standard finite-volume method on a uniform grid and then integrating in time using
MATLAB’s built-in adaptive implicit solver for stiff ordinary differential equations
(ODEs), ODE15s (Shampine & Reichelt 1997). In cases with permeable seals, the
linear system of equations for the leakage fluxes (2.33) becomes Nx uncoupled linear
algebraic systems of size Nz − 1, where Nx is the number of horizontal gridblocks;
we invert these systems at each timestep using a standard linear solver, which is
computationally inexpensive.
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3.1. Water injection with impermeable seals
We first consider water injection into a one-aquifer system (n = Nz = 1) with
impermeable seals (Λs

w = 0) and containing no gas (h1 = 0), in which case our
model reduces to the classical linear groundwater-flow equation from hydrology and
hydrogeology

Ncw(Rcw + 1)
∂p1

∂t
− ∂

2p1

∂x2
= sgRdI1

w(x)= 2sgRdδ(x)u(t), (3.1)

where we have taken Ṁ1
g = 0 and Ṁ1

w= Ṁu(t), where u(t) is the unit (Heaviside) step
function and δ(x) is now the dimensionless Dirac delta function. The factor of sgRd
on the right-hand side is an artefact of our use of a characteristic length based on
gas injection (2.27). It is awkward for gas properties to appear in a problem with no
gas, and they could be eliminated by suitable rescaling of the characteristic length, but
their values have no impact on the dimensional solution.

The pressure p1 is the pressure along the gas–water interface in the aquifer (see
§ 2.1.1). In the absence of gas, this degenerates to the pressure at the top of the aquifer.
Recall that our reference pressure is the initial pressure at the bottom of aquifer 1; in
the absence of vertical flow, the dimensionless pressure at the top will be lower than
the dimensionless pressure at the bottom by the dimensionless hydrostatic contribution
over the thickness of one aquifer, Ng. We therefore impose the following initial and
boundary conditions: p1(x, 0)= p1(−Lx/2, t)= p1(Lx/2, t)= p0 −Ng.

Equation (3.1) is a linear diffusion problem that can be solved analytically. To do so,
we assume symmetry across x= 0 and focus on the positive sub-domain 06 x6 Lx/2.
We then rewrite the injection term as a boundary condition: ∂p1/∂x(0, t)=−sgRdu(t).
Standard separation of variables then yields

p1(x, t)=
{

p0 −Ng + sgRd(x+ Lx/2)+Ω(x, t), x 6 0,
p0 −Ng − sgRd(x− Lx/2)+Ω(x, t), x > 0,

(3.2)

where Ω(x, t) is given by

Ω(x, t)=−
∞∑

n=0

4sgRd

Lxλ2
n

exp
[
− λ2

nt
Ncw(Rcw + 1)

]
cos(λnx), (3.3)

with
λn = (2n+ 1)π

Lx
. (3.4)

This solution is well known, and it is not surprising that our numerical scheme can
reproduce it. We use it here as an instructive reminder of the impact of compressibility
on lateral pressure dissipation.

In figure 2, we plot the pressure perturbation due to injection, 1p1≡ p1− (p0−Ng),
for different values of the compressibility number Ncw. Recall that Ncw compares the
characteristic compressibility to the characteristic pressure, so that larger values
(due either to larger compressibility or to larger pressure) imply an increasingly
compressible system, whereas Ncw → 0 implies an incompressible system. As Ncw
increases, 1p1 is smaller and more concentrated near the injection point (x= 0) – that
is, compressibility mitigates pressure buildup in both magnitude and extent for a fixed
injection time (figure 2a). For all values of Ncw, the injection pressure is proportional
to
√

t until the perturbation reaches the boundaries (figure 2b). Thereafter, interaction
with the fixed pressure at x=±Lx drives a transition toward a steady-state profile that
is linear in x. The system reaches this steady state more quickly as Ncw decreases,
and instantaneously in the incompressible limit (Ncw→ 0).
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FIGURE 2. (Colour online) Pressure perturbation during water injection into a one-aquifer
system with impermeable seals for a wide range of compressibilities, log10(Ncw)≈−6.5,
−6, −5.5, −5, −4.5, −4, −3.5, −3 and −2.5. We plot (a) the pressure perturbation at
the end of injection, 1p1(x, t= 1), against x, and (b) the injection pressure, 1p1(x= 0, t),
against

√
t. The dashed red line is the incompressible limit (Ncw → 0) and the dashed

magenta line is the analytical solution for the reference scenario (log10(Ncw)≈−4.5). Note
that the curve for log10(Ncw)≈−6.5 is not visible in (a).

3.2. Water injection with permeable seals
Our model captures vertical pressure dissipation at the basin scale by allowing for a
weak vertical flow of water through the aquifers and across the seals, assuming that
this vertical water flux has a continuous, piecewise-linear structure. We also neglect
compressibility and lateral transport within the seals by assuming that the vertical
fluxes of water in and out must be equal.

To test these assumptions, we next consider water injection into the central aquifer
(n= 4) of a seven-aquifer system (Nz= 7) with permeable seals, but no gas (hn= 0 for
all n). In this context, our model is most similar to the linear groundwater-flow model
proposed by Hunt (1985) for coupling layered aquifers via vertical flow across the
intervening seals; Hunt (1985) neglected vertical flow except across the seals, whereas
we allow for weak vertical flow throughout the system. Our model becomes

Ncw(Rcw + 1)
∂pn

∂t
− ∂

∂x

[
∂pn

∂x
+ Λ

s
w

6
∂

∂x
(qs

w,z + 2qs+1
w,z )

]
=−R2

AΛ
s
w(q

s+1
w,z − qs

w,z)+ sgRdIn
w(x), (3.5)

for n= s= 1 · · · 7, with

Λs
w

2
qs+1

w,z +
[

1+ Λ
s
w

2

]
qs

w,z =−[pn − pn−1 +Ng(b+ 1)], (3.6)

for n= s= 2 · · · 6, where I4
w= 2sgRdδ(x)u(t), In

w= 0 for n 6= 4 and q1
w,z= q8

w,z= 0. The
initial and boundary conditions are as in (2.34).

To assess the accuracy of our model, we compare it with a classical 2-D
groundwater-flow model, which can be written in our notation as

Ncw(Rcw + 1)
∂p
∂t
−Λ2D

w

(
∂2p
∂x2
+ ∂

2p
∂z2

)
= sgRdI2D

w , (3.7)
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FIGURE 3. (Colour online) Pressure perturbation during water injection into aquifer 4 of
a seven-aquifer system with permeable seals, comparing our quasi-2-D model against a
full 2-D model. We show (a) the reconstructed 2-D pressure perturbation from our quasi-
2-D model at t = 1 for b = 0.0125 and Λs

w = 10−5, (b) the same thing for the full 2-D
model and (c) the magnitude of the relative error ε between the two, disregarding the
seals (shown in light blue). We also plot (d) the pressure perturbation at the top of each
aquifer at x= 0 against t for our quasi-2-D model (dashed red) and the full 2-D model
(solid black), (e) the pressure at the top of each aquifer at t=1 against x for the quasi-2-D
model (dashed red) and the full 2-D model (solid black) and ( f ) the r.m.s. relative error
between the two models at t= 1 against Λs

w for b= 0.0125, 0.025, 0.05 and 0.1.

where p(x, z, t) is the full 2-D pressure field, Λ2D
w is equal to 1 within the aquifers

and to bΛs
w within the seals, and I2D

w is equal to 2sgRdδ(x)u(t) within aquifer 4 and
to 0 elsewhere. This model allows for full 2-D flow, as well as compressibility in
both the aquifers and the seals (e.g. Bear 1979). We impose the following initial and
boundary conditions: p(x, z, 0)= p(−Lx/2, z, t)= p(Lx/2, z, t)= p0 − Ng(z− z1,B) and
∂p/∂z(x, z1,B, t) = ∂p/∂z(x, z7,T, t) = 0. As with our reduced-order model, we solve
(3.7) numerically by discretising in space using a standard finite-volume method on
a uniform 2-D grid and integrating in time using MATLAB’s built-in implicit solver
for stiff ODEs, ODE15s (Shampine & Reichelt 1997). To ensure a fair comparison
between the two models, we use the same resolution in x and the same absolute and
relative tolerances in time for both solutions.

In figure 3(a), we show the pressure perturbation predicted by our quasi-2-D model
at the end of injection (t = 1) for b = 0.0125 and Λs

w = 10−5. We show the same
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FIGURE 4. (Colour online) Pressure perturbation during water injection into aquifer 4
of a seven-aquifer system with permeable seals for a wide range of leakage strengths,
log10(Λ

s
w) = −9, −7, −6.5, −6, −5.5, −5, −4, −3, −2 and −1. We plot the pressure

perturbation at t = 1 against x in (a) the injection aquifer (n = 4) and in (b) the
bottom-most aquifer (n= 1). We also plot (c) the pressure perturbation at x= 0 against t
on a log scale. All three panels include the analytical solutions for the ‘no-leakage’ limit
(dashed cyan) and the ‘strong-leakage’ limit (dashed black).

quantity for the full 2-D model in figure 3(b) and the relative error between the
two in figure 3(c). For reference, solving the full 2-D model took about 8 min on
a single core of a standard desktop PC, whereas solving our quasi-2-D model for
the same scenario took about 0.4 s. We compare these predictions in more detail
in figure 3(d–f ). Because our model neglects compressibility within the seals, it
begins pressurising the overlying and underlying aquifers slightly faster than the full
2-D model, leading to a small disagreement in pn outside of the injection layer at
early times (figure 3d). This error decays as the seals pressurise, which happens
over a dimensionless timescale bNcw(1 + Rcw)/(R2

AΛ
s
w) � 1 (dimensional timescale

b2φ(cw + cr)/λ
s
w � T ). For the scenario shown in figure 3(a–e), this timescale is

bNcw(1 + Rcw)/(R2
AΛ

s
w) ≈ 4 × 10−4 and the error does indeed become negligible for

dimensionless times sufficiently greater than this value. Figure 3( f ) shows that this
source of error increases monotonically with b, but varies non-monotonically with
Λs

w: for small values of Λs
w, the seals pressurise more slowly but vertical pressure

dissipation is less important, whereas for larger values of Λs
w, vertical pressure

dissipation is more important and the seals pressurise more quickly. The maximum
root-mean-square (r.m.s.) relative error between the two solutions is about 0.004 for
b= 0.1, the largest value tested. These results suggest that our 1-D model reproduces
the full 2-D pressure field both accurately and efficiently.

We next use our model to investigate the impact of vertical pressure dissipation
in more detail. To do so, we solve the water-injection problem described above for
a wide range of leakage strengths Λs

w. We find that the pressure in the injection
aquifer decreases monotonically with Λs

w, whereas the pressure in all other aquifers
increases monotonically with Λs

w (figure 4a,b). Note that compressibility moderates
the importance of leakage since increasing compressibility reduces the strength and
extent of the pressure perturbation in both x and z.

For small values of Λs
w (Λs

w . 10−7), vertical pressure dissipation is unimportant
and there is effectively no pressure communication between aquifers. The injection
pressure is completely confined to the injection aquifer and evolves according to the
solution derived in § 3.1, such that the pressure perturbation in the injection aquifer
evolves as 1p4∼√t (figure 4c). The other aquifers are unperturbed by injection, such
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that pn remains hydrostatic and 1pn=0 for n 6=4. This is the ‘no-leakage’ limit shown
in figure 4.

For large values of Λs
w (Λs

w & 10−3), the seals provide essentially no barrier to
vertical pressure dissipation. As a result, pressure equilibrates rapidly in the vertical
direction and the system behaves like a single aquifer with an effective thickness of
NzH, with each aquifer experiencing 1/Nz of the total injection rate. The pressures can
therefore be described by an effective model

Ncw(Rcw + 1)
∂pn

∂t
− ∂

2pn

∂x2
= 2sgRd

Nz
δ(x)u(t), (3.8)

for n= 1 · · ·Nz, with the same boundary and initial conditions as (3.5). This has the
analytical solution

pn(x, t)=


p0 −Ng[n+ (n− 1)b] + sgRd

Nz
(x+ Lx/2)+ Ω(x, t)

Nz
, for x 6 0,

p0 −Ng[n+ (n− 1)b] − sgRd

Nz
(x− Lx/2)+ Ω(x, t)

Nz
, for x > 0,

(3.9)

where Ω(x, t) is given in (3.3) above. This is the ‘strong-leakage’ limit shown in
figure 4. In this limit, the pressure perturbation is the same in all aquifers and evolves
according to 1pn ∼√t (figure 4c).

For all non-zero values of Λs
w, the pressure perturbation in the injection aquifer

follows the ‘no-leakage’ limit at early times before transitioning to the ‘strong-leakage’
limit at late times. The latter transition occurs once the pressure perturbation reaches
the top and bottom boundaries. Both transitions happen earlier as Λs

w increases
(figure 4c). At intermediate times, the pressure is in a transitional state between the
two limiting cases. Chang et al. (2013) noted the same departure from the early-time√

t scaling due to vertical pressure dissipation, but did not capture the late-time return
to a
√

t scaling because their system was vertically infinite.

3.3. Gas injection with impermeable seals
We now consider gas injection into a one-aquifer system (n = Nz = 1) with
impermeable seals (Λs

w= 0), in which case our model is equivalent to that of Mathias
et al. (2009) but for a planar (rather than axisymmetric) geometry and accounting
for moderate gas compressibility. To describe gas injection, we take Ṁ1

g = Ṁ u(t) and
Ṁ1

w = 0. The equation for gas is then (2.30) for n = 1 and I1
g = 2 δ(x) u(t), and the

equation for water is (2.31) for n= 1 and q1
w,z = q2

w,z = I1
w = 0.

As it is injected, the gas will spread along the top of the aquifer as a buoyant
gravity current. The characteristic tongued shape of the gas plume will be dictated
by the interplay between injection pressure, mobility contrast, buoyancy and
compressibility, and is therefore dictated by several different dimensionless parameters:
M, Ng, Ncw, Rcw, Rcf , Rd and sg. The impacts of these parameters on the shape
of the gas plume are, for the most part, well understood from previous work in
one-aquifer systems (e.g. Mathias et al. 2009) and are not the focus of the present
study. We illustrate the impacts of M, Ng, Ncw in figure 5. The mobility ratio
M measures the (much higher) mobility of the gas relative to the water and is
ultimately responsible for the strongly tongued shape of the gas plume (Nordbotten
& Celia 2006b). Increasing M increases the severity of this tonguing; decreasing M
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FIGURE 5. (Colour online) The shape of the gas plume at the end of gas injection into
a one-aquifer system with impermeable seals, shown here for (a) M= 2, 10, 25 and 150,
(b) Ng = 1, 20, 100 and 200, and (c) Ncw = 3.02 × 10−6, 3.02 × 10−5, 3.02 × 10−4 and
3.02× 10−3. Decreasing M suppresses tonguing, increasing Ng leads to faster spreading,
and increasing Ncw makes the gas plume somewhat more compact. The former two
parameters have much stronger impacts than the latter.

suppresses tonguing and focuses the gas near the injection well (figure 5a). As a pair,
density ratio Rd and gravity number Ng measure the importance of buoyancy relative
to injection pressure. We expect Rd < 1 (gas buoyant relative to water), in which case
Ng > 1 implies that the gas will tend to rise and spread significantly due to buoyancy
during the injection process, whereas Ng < 1 implies that buoyancy will play little
role during injection (Nordbotten & Celia 2006b, and figure 5b). The compressibility
number Ncw has the weakest impact among these three parameters, despite varying
over the largest range. Increasing Ncw leads to a slightly more compact and less
tongued plume by reducing the strength of the injection pressure and increasing the
density of the gas (figure 5c). Although the impact of compressibility on plume shape
is relatively small in the scenarios shown here, it can have a stronger effect in other
regions of the parameter space (Mathias et al. 2009; Vilarrasa et al. 2010).

3.4. Gas injection with permeable seals
Finally, we consider gas injection into the central aquifer (n = 4) of a seven-aquifer
system (Nz= 7) with permeable seals in order to study the impact of vertical pressure
dissipation on the shape of the gas plume. The presence of gas complicates vertical
pressure dissipation in the sense that the gas itself presents additional resistance to
vertical water flow between the injection aquifer (aquifer 4) and the overlying aquifer
(aquifer 5) by obstructing a portion of the seal, and by doing so in the region that
is likely to have the highest pressure. Water is likely to be the wetting phase, and
may therefore still be able to flow through the gas region via a connected network
of residual films. We expect the resistance to this flow to be significantly higher
than if the gas were not present. This resistance is quantified by the reduced relative
permeability to water in the gas region, k?rw. Unfortunately, the magnitude of k?rw for a
network of residual wetting films is very poorly constrained. Although the existence
of a connected and conductive network of residual wetting films has been confirmed
experimentally (Teige et al. 2006), it is not included in standard models for residual
saturation and relative permeability. We begin here by considering the interaction
of gas injection with pressure dissipation in the case where the gas does not offer
any additional resistance to vertical water flow (k?rw = 1). We then consider the more
general case of 0 6 k?rw 6 1, with an emphasis on the most likely scenario of k?rw� 1.
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FIGURE 6. (Colour online) The shape of the gas plume during gas injection into the
central aquifer of a seven-aquifer system with permeable seals: (a) plume shapes at the
end of injection for log10 Λ

s
w = −10, −5, −4, −3.4, −3, −2.4 and −2, and (b) plume

width w as a function of Λs
w for injection into systems of Nz= 3, 5, 7, 9 and 13 aquifers.

3.4.1. Gas does not obstruct vertical water flow (k?rw = 1)
If the gas provides no additional resistance to vertical flow of water, then we expect

gas injection into the central layer of a homogeneous system to lead to a sequence of
vertical water fluxes and a pressure distribution that are vertically symmetric across
the injection layer – that is, all vertical fluxes should be oriented away from the
injection layer and their magnitudes, as well as the pressure in each layer, should
depend only on distance from the injection layer. Much like for water injection (§ 3.2),
we expect the pressure in the injection aquifer to decrease and the pressure in all
other aquifers to increase as Λs

w increases. We also expect all vertical water fluxes to
increase monotonically in magnitude as Λs

w increases.
We plot the shape and width of the gas plume for different values of Λs

w in figure 6.
For Λs

w � 1, we reproduce the no-leakage limit from § 3.3. As Λs
w increases, we

find that the increasingly strong pressure dissipation leads to an increasingly compact
plume by suppressing tonguing and thickening the gas column around x = 0. This
is similar to the effect of increasing Ncw (figure 5), but substantially stronger. To
rationalise this behaviour, we consider the impact of vertical pressure dissipation on
the pressure gradient driving gas flow.

During injection, the tonguing of the gas plume is driven by the strong pressure
gradient and the high mobility of the gas relative to the water. The pressure in the
injection layer decreases monotonically with distance from the injection well, and we
showed above that it also decreases monotonically with increasing Λs

w; figure 4(a)
illustrates these trends for water injection at t = 1, and gas injection is qualitatively
similar. These trends result from the fact that the injected gas must displace water. For
Λs

w= 0, all of this water is forced laterally through the single injection aquifer, which
requires a relatively large pressure gradient. As Λs

w increases, an increasing fraction
of the water is also displaced vertically through the extensive seals and then laterally
through other aquifers, thus reducing the pressure gradient in the injection aquifer
itself. For strong injection, the lateral gas flow rate is given to a first approximation
by qn

g,x∼−λghn∂pn/∂x (2.7). As the pressure gradient ∂pn/∂x decreases due to vertical
pressure dissipation, the plume thickness hn must increase in order to achieve the
injection rate imposed at x= 0, thus producing a thicker and more compact gas plume.

To quantify this effect, we measure the width w of the gas plume as a function of
Λs

w and Nz, where w is defined as the distance between the injection point and the
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FIGURE 7. (Colour online) The reduced relative permeability to water within the gas
region leads to vertical asymmetry in the pressure field and the vertical water fluxes. Here,
we show: the pressure perturbation at t = 1 in (a) the aquifer immediately beneath the
injection aquifer (n = 3) and in (b) the aquifer immediately above the injection aquifer
(n= 5), as well as (c) the net vertical water flux through the injection aquifer (q4

wz + q5
wz)

at t = 1 (inset: q4
wz and q5

wz individually). Curves are for log10(k
?
rw)=−8, −7, −6.5, −6,

−5.5, −5, −4.5, −4, −3.5 and 0. We also plot (d) the width of the gas plume at t= 1
against k?rw, normalised by the plume width for k?rw = 1, for log10(Λ

s
w)=−7, −6, −5, −4

and −3. Note that the horizontal axis of (c) is focused near the gas plume.

place where the plume thickness falls below an arbitrary threshold value (here, 10−6).
Note that, in our scaling, a perfectly un-tongued plume (a rectangular block of gas)
would have a width of ∼1. We find that pressure dissipation can decrease the width
of the plume by a factor of 2 or more, even for seemingly small values of the leakage
strength (Λs

w∼ 10−3). This effect is amplified by increasing Nz, and particularly so for
larger values of Λs

w. This effect occurs because pressure dissipation reduces the lateral
pressure gradients that drive gas flow (figure 4).

3.4.2. Gas obstructs vertical water flow (0 6 k?rw 6 1)
If the gas does provide additional resistance to upward water flow in the injection

aquifer, then we expect this resistance to suppress upward pressure dissipation and
to enhance downward pressure dissipation, leading to vertical asymmetry in the water
fluxes and in the pressure distribution. The importance of this resistance is determined
by both Λs

w and k?rw. In order for the additional resistance from gas in the aquifer to
impact pressure dissipation, it must be comparable to (or larger than) the resistance
already provided by the seals (roughly, k?rw <Λ

s
w).

We illustrate the impact of this resistance in figure 7. For injection into aquifer 4,
the pressure in the aquifer below (aquifer 3) increases as k?rw decreases (figure 7a) and
the pressure in the aquifer above (aquifer 5) decreases as k?rw decreases (figure 7b).
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For k?rw= 1, the vertical water fluxes through the bottom and top seals of the injection
aquifer (seals 4 and 5, respectively) are equal in magnitude and opposite in direction,
so they sum to zero (figure 7c, main plot). As k?rw decreases, there is a net downward
flow of water immediately under the gas plume and a net upward flow of water
elsewhere. The former occurs because the gas obstructs upward flow, as expected; the
latter occurs because this obstruction leads to a lower pressure in the aquifer above
than in the aquifer below (figure 7a,b), leading to a net upward flow of water in
regions unobstructed by gas. Note that all of these effects are localised around the
gas plume, and are relatively unimportant in the far field.

Recall that pressure dissipation decreases the width of the gas plume by suppressing
tonguing (figure 6). The resistance to flow of water through gas obstructs pressure
dissipation and therefore has the opposite effect, increasing the width of the gas plume
relative to its width when k?rw = 1 (figure 7d).

4. Discussion and conclusions

We have developed a new model that couples gas injection and migration with
lateral and vertical pressure dissipation in a layered aquifer system. Our model
combines a gravity-current representation of the gas with weak vertical flow of
water both through the aquifers (Nordbotten & Celia 2006a) and across the seals
(Hunt 1985). Our model constitutes a unique and computationally efficient tool for
simultaneously studying the near-field and far-field aspects of gas injection.

Here, we used our model to show that vertical pressure dissipation decreases
the pressure in the injection aquifer as well as the width of the gas plume, while
increasing the pressure in all other aquifers. For our reference parameters (see table 1),
the maximum injection pressure and the width of the gas plume are reduced by about
two thirds and by about one third, respectively, relative to their values without vertical
pressure dissipation (Λs

w = 0). Vertical pressure dissipation also slows lateral pressure
dissipation, localising pressure buildup around the injection well. These effects have
important implications for CCS. The reduction in pressure buildup near the injection
well reduces the likelihood of fracturing the caprock. The reduction in lateral pressure
dissipation reduces the radius of influence of the injection well, and also the impact
of nearby wells and other geological features on injection (Chang et al. 2013). All of
these effects serve to relax the pressure constraint on storage capacity, allowing for
longer injection times, larger injection rates and/or storage in aquifers that are less
laterally extensive (Szulczewski et al. 2012). In addition, decreasing the width of the
CO2 plume by suppressing tonguing leads to a more compact shape at the end of
injection, increasing the amount of residual trapping that would occur as the plume
later rises, spreads and migrates (MacMinn & Juanes 2009). However, a more compact
CO2 plume will also have a smaller interfacial area, probably reducing post-injection
trapping associated with convective dissolution (e.g. MacMinn, Szulczewski & Juanes
2011).

Although we have developed our model in the context of CO2 injection for CCS,
our model can be readily adapted to other subsurface injection problems – for
example, waste-water disposal or enhanced oil recovery (EOR). Changing the sign of
the source term (i.e. replacing injection with extraction) would allow for exploration
of the role of pressure dissipation during hydrocarbon production. We expect vertical
pressure dissipation to have a similarly large impact on fluid extraction in a layered
system due to its impact on the lateral pressure gradient that draws fluid toward the
extraction well.
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Vertical pressure dissipation reduces pressure buildup and dissipation in the injection
layer (see above and Chang et al. 2013). In addition, the injection pressure does
not scale with

√
t at intermediate times and/or intermediate values of Λs

w. These
results have import implications for gas leakage, which occurs when the capillary
pressure at the top of the gas plume exceeds the entry pressure of the overlying seal.
With negligible vertical water flow, the capillary pressure at the top of the layer is
determined by buoyancy and is approximately pc ≈ (ρw − ρg)gh. We have shown that
pressure dissipation results in compaction and thickening of the gas plume, which
would increase the contribution of buoyancy to capillary pressure. The impacts of
vertical water flow and the connectivity of the water through the gas region are less
clear. The extension of our model to account for these effects and an exploration of
gas leakage will be the subject of future work.
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