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Fluid venting phenomena are prevalent in
sedimentary basins globally. Offshore, these localized
fluid-expulsion events are archived in the geologic
record by the resulting pockmarks at the sea-floor.
Venting is widely interpreted to occur via hydraulic
fracturing, which requires near-lithostatic pore
pressures for initiation. One common driver for these
extreme pressures is horizontal tectonic compression,
which pressurizes the entire sedimentary column
over a wide region. Fluid expulsion leads to a
sudden, local relief of this pressure, which then
gradually recharges through continued compression,
leading to episodic venting. Pressure recharge
will also occur through pressure diffusion from
neighbouring regions that remain pressurized, but
the combined role of compression and pressure
diffusion in episodic venting has not previously been
considered. Here, we develop a novel poroelastic
model for episodic, compression-driven venting.
We show that compression and pressure diffusion
together set the resulting venting period. We derive
a simple analytical expression for this venting
period, demonstrating that pressure diffusion can
significantly reduce the venting period associated
with a given rate of compression. Our expression
allows this rate of compression to be inferred from
observations of episodic venting. We conclude that
pressure diffusion is a major contributor to episodic
fluid venting in mudstone-dominated basins.
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1. Introduction
Fluid venting phenomena have been frequently observed in sedimentary basins since the
advent of three-dimensional seismic imaging [1,2]. The vents themselves are localized, typically
comprising cylindrical conduits known as fluid-escape pipes that can create pockmarks or feed
effusive mud volcanoes [3,4]. Venting is thought to initiate when the seal of a pressurized reservoir
fails through hydraulic fracturing, creating a high-permeability pathway for the transport
of basinal fluids through kilometres of low-permeability rock [5]. This mode of seal failure
poses clear risks for the subsurface storage of hydrogen and the long-term sequestration of
anthropogenic waste such as carbon dioxide (CO2). Indeed, unexpected vertical fluid migration
at the Sleipner CO2 storage pilot site is likely due to exploitation of pre-existing conduits [6,7].

Repeated fluid venting from a fixed locus has been documented in a subset of cases [8–
12]. In each of these cases, venting occurs in discrete episodes of fluid expulsion separated by
long quiescent periods. In the North Levant Basin, located in the Eastern Mediterranean, the
presence of a flowing salt sheet enables dating of individual venting episodes [5,12,13], thus
providing a robust basis for investigating episodic fluid venting. More than 300 fluid escape
pipes record episodic venting through this approximately 1.5 km-thick layer of low-permeability
salt. The salt overlies an approximately 3 km-thick clastic succession dominated by mudstone.
These fluid-escape pipes are interpreted to form vertically from the crests of folded sandstone
reservoirs, terminating at the seafloor as pockmarks. Viscous flow of the salt layer deforms the
relic pipes over geological time, such that repeated venting leads to a linear trail of pockmarks
along the direction of salt flow [9]. Thirteen pockmark trails have been observed across the North
Levant Basin, each recording up to 45 venting episodes since approximately 2 Ma [12]. Dating of
these venting episodes reveals a typical time interval between episodes (i.e. venting period) of
approximately 100 kyr [5,12,13].

The initiation of a vent via hydraulic fracturing requires fluid pressure in excess of the
minimum horizontal compressive stress [14,15]. Once initiated, venting continues until this
overpressure is sufficiently relieved that the pathway closes. Subsequently, during quiescence,
fractures may self-heal by solid creep, swelling and mineral precipitation [16,17]. In the North
Levant Basin, previous pathways are deformed and advected away from their original trajectory
by salt flow. Hence, episodic venting requires the repeated recharge of overpressure to the
original point of failure, implying that the overpressure mechanism remains active across venting
episodes. The disparity between the rapid drop in pressure during venting and the slow growth
of pressure during recharge suggests that the time-history of reservoir pressure across multiple
episodes resembles a sawtooth pattern, with the up-slope representing the rate of pressure
recharge and the amplitude representing the pressure drop during venting [5]. Cartwright et al.
[5] attribute this pressure drop to be the tensile strength of the sealing rock, estimated to range
from 0.6 MPa to 2 MPa. Using the sawtooth concept and the measured period between venting
episodes, Cartwright et al. [5] inferred a rate of pressure recharge in the North Levant Basin of
approximately 9 MPa Myr−1.

Overpressure can be generated by various mechanisms [18]. For the Levant Basin, Cartwright
et al. [5] ascribe overpressure generation to regional tectonic compression on the basis of
qualitative physical arguments. Previous studies have used numerical models to predict
overpressures due to tectonic compression and quantify the role of factors such as duration and
rate of shortening [19–22]. For example, Obradors-Prats et al. [21] showed that an overpressure
of approximately 10 MPa can be generated by a shortening of approximately 10% over a period
of approximately 100 kyr. However, overpressure will typically be heterogeneously distributed
throughout the sedimentary column. Ge & Garven [23] showed that tectonic compression
pressurizes stratigraphic layers at different rates due to their different elastic properties. These
pressure differences equilibrate over time through vertical fluid redistribution, which can be
described mathematically as the diffusion of pressure.

Pressure diffusion between sedimentary layers has been investigated in many previous works
[e.g. 24, 25, and references therein]. The primary concern of these studies has been to estimate
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the timescales and mechanisms of pressure redistribution through low-permeability layers. As a
result, these studies typically focus on the diffusive equilibration of an initially non-hydrostatic
pressure distribution while neglecting the origin of that distribution or any ongoing sources
of overpressure generation. This omission may not always be justified, given that mechanisms
such as tectonic compression persist for millions of years and are physically independent of
pressure redistribution. Moreover, these studies generally neglect punctuated effects that modify
the pressure, such as venting. An exception is Luo & Vasseur [26], who investigated mechanisms
of pressure dissipation including hydraulic fracturing.

Despite the large body of relevant work, most previous studies have neglected at least one
of the three key components of episodic venting: pressure build-up, pressure diffusion and
hydraulic fracturing. The studies that include all three components predict episodic venting.
However, these models incorporate a variety of additional physics such as reaction and heat
transport, necessitating numerical solution [27,28]. The complexity and computational expense
of these models limits them to generating a small set of results for a specific setting, making it
difficult to develop more general insight. Such insight is facilitated by a simplified theory that
incorporates only the physical processes needed to describe the general, episodic dynamics of
fluid venting in sedimentary basins. Moreover, measurements of the venting period are readily
interpreted in this analytical context.

Here we develop a poroelastic model of tectonic overpressure generation, diffusive pressure
redistribution and fluid venting in layered sedimentary basins. We derive analytical solutions that
elucidate the associated pressure dynamics and the parametric controls on venting. We show in
particular that the venting period τ is given by τ ∝ (�P/ėxx)/(1 + ν/γ ), where �P is the pressure
drop from each venting event, ėxx is the horizontal strain rate due to tectonic compression and ν

and γ are dimensionless parameters that are defined below. The quantity �P/ėxx is proportional
to the venting period in the absence of pressure diffusion, as estimated by Cartwright et al. [5]. We
refer to the dimensionless quantity (1 + ν/γ ) as the venting frequency multiplier because it reduces
the venting period relative to the compression-only case. We show that this frequency multiplier
can be estimated using the thickness ratio of the mudstone and sandstone layers. In mudstone-
dominated basins where fluid venting phenomena are commonly observed [3], pressure recharge
and venting period are controlled by pressure diffusion.

The remainder of the manuscript is organized as follows. In §2a, we derive and solve
the poroelastic equations governing tectonic compression of, and pressure diffusion between,
sedimentary layers in the absence of fluid venting. In §2b, we explore the response of the system
to fluid venting without compression. In §2c, we combine solutions from §§2a and 2b to obtain a
full model for episodic venting; we then derive analytical solutions for periodic venting. In §3, we
discuss the wider implications of this work, as well as limitations and potential generalizations of
the model. In §4, we conclude with a summary and suggestions for promising avenues of future
work.

2. Model

(a) Compression
We consider two horizontal layers of rock, a sandstone with thickness hs overlying a mudstone
with thickness hm, as illustrated in figure 1a. To focus on large-scale pressurization from
regional tectonic compression, we assume that these layers have a large lateral extent, such
that pressure diffusion occurs exclusively through vertical fluid migration. The development of
large overpressure from tectonic compression thus requires that compression be rapid relative to
pressure diffusion and/or that vertical flow be obstructed.

Sedimentary basins are typically underlain by dense basement rock, so we assume the
existence of an impermeable layer below the mudstone. Furthermore, motivated by sedimentary
basins such as the Levant Basin that are capped with an extensive, thick salt layer, we apply
the same assumption above the sandstone. Salt is considered to be impermeable on geological
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Figure 1. Schematic cross-section of sedimentary-basin model. (a) We consider the tectonic compression of two permeable
sedimentary layers, sandstone (yellow) and mudstone (brown), at a constant horizontal strain rate−ėxx . The system is sealed
by impermeable layers above the sandstoneandbelow themudstone. (b) Examplepressure–depthplot showing thehydrostatic
pressure (blue), pore pressure resulting from compression (cyan) and lithostatic stress (black). (c) As in (b), but now showing the
lithostatic stress in excess of hydrostatic (black) and the pore overpressure p (cyan), which is the pressure in excess of hydrostatic
Phyd.

timescales [though see 29]. This model configuration prohibits vertical pressure diffusion across
the salt, but allows for sudden fluid expulsion via hydraulic fracturing. The theory below could
be generalized to allow for a ‘seal’ with a small but nonzero permeability.

As in previous studies that consider pressure diffusion between sedimentary layers, we
assume that flow is single-phase, isothermal and one-dimensional [24,30–32]. Crucially, we
deviate from these previous studies by modelling the evolution of pressure due to ongoing
(rather than historical) tectonic compression. Tectonic compression has been conceptualized as
a bulldozer imparting sufficient differential stress to deform weaker sediments [33]. It has been
modelled mathematically as an imposed, constant horizontal strain rate; strain rates are routinely
used to quantify tectonic deformation [e.g. 34,35]. We denote the imposed strain rate as −ėxx, such
that a positive value of ėxx indicates shortening. In the absence of venting, tectonic shortening is
accommodated through compression of the pore fluid and/or of the solid grains. We refer to this
specific process as tectonic compression.

Assuming that the solid skeleton obeys linear elasticity and adopting the sign convention that
tension is positive, the effective stress tensor σ ′ is related to the strain tensor e via

σ ′ = λtr (e) I + 2μe, (2.1)

where λ and μ are the drained Lamé parameters and e ≡ 1
2 [∇u + (∇u)T] with u denoting the solid

displacement. The effective stress is related to the total stress σ and pore pressure P by Terzaghi’s
principle,

σ = σ ′ − αPI, (2.2)

where α is Biot’s coefficient. Mass conservation leads to the storage equation [36], see electronic
supplementary material S1, which is equivalent to the classical continuity equation presented by
Biot [37]

α
∂e
∂t

+ S
∂P
∂t

= −∇ · q, (2.3)

where e ≡ tr (e) is the volumetric strain, q is the Darcy flux of fluid through the pore space
and S ≡ φc
 + (α − φ)cg is the storativity, with porosity φ, fluid compressibility c
 and grain
compressibility cg. The time derivative of the xx-component of equation (2.1) implies that

∂σ ′
xx

∂t
= λ

∂e
∂t

− 2μėxx, (2.4)

and the trace of equation (2.1) implies that (3λ + 2μ)e = tr(σ ′). From these results and equation
(2.2), we arrive at

∂P
∂t

= λ + μ

α

∂e
∂t

+ μ

α
ėxx − 1

2α

(
∂σyy

∂t
+ ∂σzz

∂t

)
. (2.5)
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Equation (2.5) describes the evolution of pore pressure in response to changes in strain and total
stress. The total vertical stress at a fixed depth can decrease (∂tσzz < 0) in response to folding
and thrust faulting, which is a common consequence of tectonic shortening. In the North Levant
Basin, folding and thrusting leads to localized salt thinning, resulting in a slowly increasing
total vertical stress [5]. For simplicity, we neglect this minor effect by assuming that ∂tσzz = 0.
The evolution of the total horizontal stress in the orthogonal direction, ∂tσyy is less clear. Two
endmember assumptions are that the orthogonal total stress remains constant (∂tσyy = 0), or that
the associated strain remains constant (∂teyy = 0). The former unconditionally allows for hydraulic
fracturing, whereas the latter may not in some cases (electronic supplementary material, S2). For
simplicity, we proceed with the former assumption and take σyy to be constant. Combining these
assumptions with equations (2.3) and (2.5) gives

∂P
∂t

= αμėxx

α2 + S(λ + μ)
− λ + μ

α2 + S(λ + μ)
∇ · q. (2.6)

Thus, two processes drive changes in pore pressure: compression and fluid flow. The first term in
equation (2.6) corresponds to compression, which acts to increase pressure everywhere at a rate
determined by the compression rate and the poroelastic properties of the medium. The second
term in equation (2.6) demonstrates that pressure increase at a point is impeded by a net export
of fluid (∇ · q > 0) or enhanced by a net import (∇ · q < 0).

For a system that is both laterally extensive and laterally homogeneous (i.e. no variations in x
or y; figure 1), fluid flow is limited to the vertical direction, q ≡ qẑ. Then, applying equation (2.6)
to each layer,

∂Ps

∂t
= αsμsėxx

α2
s + Ss(λs + μs)

− λs + μs

α2
s + Ss(λs + μs)

∂q
∂z

for z ∈ [−hs, 0] (2.7a)

and

∂Pm

∂t
= αmμmėxx

α2
m + Sm(λm + μm)

− λm + μm

α2
m + Sm(λm + μm)

∂q
∂z

for z ∈ [0, hm]. (2.7b)

where the subscripts s and m represent properties of the sandstone and of the mudstone,
respectively. In this system, the hydrostatic contribution to the pressure remains constant. It
has no effect on the dynamics and hence we replace total pressure P with overpressure p. The
overpressure is the pressure in excess of hydrostatic, p ≡ P − Phyd (figure 1b,c),

∂ps

∂t
= αsμsėxx

α2
s + Ss(λs + μs)

− λs + μs

α2
s + Ss(λs + μs)

∂q
∂z

for z ∈ [−hs, 0] (2.8a)

and

∂pm

∂t
= αmμmėxx

α2
m + Sm(λm + μm)

− λm + μm

α2
m + Sm(λm + μm)

∂q
∂z

for z ∈ [0, hm]. (2.8b)

Sandstones typically have permeabilities that are many orders of magnitude larger than those
of mudstones. Consequently, pressure diffuses much faster in sandstone than in mudstone.
Hence over timescales of pressure diffusion in the mudstone, the overpressure in the sandstone
is approximately vertically uniform. Considering this, we integrate equation (2.8a) over the
thickness of the sandstone,

dps

dt
= αsμsėxx

α2
s + Ss(λs + μs)

− λs + μs

α2
s + Ss(λs + μs)

q(0, t) − q(−hs, t)
hs

, (2.9)

where ps is the depth-averaged overpressure in the sandstone. Therefore, the rate of change of
the average overpressure in the sandstone is given by a term from compression and a term from
the difference in flux across the boundaries. The sandstone is overlain by an impermeable layer so
q(−hs, t) = 0. Since the overpressure in the sandstone is approximately uniform, we assume ps = ps
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and obtain
dps

dt
= αsμsėxx

α2
s + Ss(λs + μs)

− λs + μs

α2
s + Ss(λs + μs)

q(0, t)
hs

, (2.10)

where the flux out of the sandstone q(0, t) must be equal to the flux into the top of the mudstone
(in the absence of venting). Fluid transport in the mudstone is governed by Darcy’s Law,

q = − km

η

∂pm

∂z
, (2.11)

where η is the viscosity of the fluid and km is the permeability of the mudstone, both assumed to be
constant. Equations (2.8b), (2.10) and (2.11) combine to form a coupled system for the overpressure
of each layer,

dps

dt
= αsμsėxx

α2
s + Ss(λs + μs)

+ λs + μs

α2
s + Ss(λs + μs)

1
hs

km

η

∂pm

∂z

∣∣∣∣
z=0

at z = 0 (2.12a)

and
∂pm

∂t
= αmμmėxx

α2
m + Sm(λm + μm)

+ λm + μm

α2
m + Sm(λm + μm)

km

η

∂2pm

∂z2 for z ∈ [0, hm]. (2.12b)

Equation (2.12a) is an ordinary differential equation for the time-evolution of the overpressure
in the sandstone. Equation (2.12b) is a partial differential equation for the overpressure in the
mudstone in depth and time. The latter requires two boundary conditions. The first boundary
condition is that the sandstone and mudstone overpressures must match at the contact, pm(0, t) =
ps. The second boundary condition is that there is no fluid flux through the impermeable layer
at the bottom of the mudstone ∂pm/∂z|hm = 0. Equations (2.12) are simplified by introducing the
following parameters:

Dm = km

η

λm + μm

α2
m + Sm(λm + μm)

and Ds = km

η

λs + μs

α2
s + Ss(λs + μs)

(2.13)

and

Γm = αmμmėxx

α2
m + Sm(λm + μm)

and Γs = αsμsėxx

α2
s + Ss(λs + μs)

. (2.14)

The parameters Γm and Γs represent the rates of pressure build-up in the mudstone and sandstone
layers, respectively, due to compression. The parameter Dm represents the diffusivity of pressure
across the mudstone, whereas the parameter Ds represents the diffusivity of pressure across the
sandstone–mudstone boundary. The full model can then be written,

∂pm

∂t
= Γm + Dm

∂2pm

∂z2 for z ∈ [0, hm], (2.15)

with boundary conditions,

∂pm

∂t
= Γs + Ds

hs

∂pm

∂z
at z = 0,

∂pm

∂z
= 0 at z = hm,

⎫⎪⎪⎬
⎪⎪⎭

(2.16)

where ps = pm(0, t). We finally assume that the mudstone and sandstone are initially at hydrostatic
pressure,

pm(z, 0) = 0. (2.17)

This initial condition is chosen for simplicity and is not essential to the model; in many
circumstances, it may be more appropriate to invoke a different initial pressure distribution.
Here, we are interested in the general response to tectonic compression, decoupled from the
basin-specific response due to an initial pressure disequilibrium.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 J

un
e 

20
23

 



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220654

..........................................................

(i) Non-dimensionalized equations

We non-dimensionalize this system of equations using mudstone properties, introducing a
dimensionless depth z∗, mudstone pressure p∗

m, and time t∗ defined as

z ≡ hmz∗, pm ≡ Γmh2
m

Dm
p∗

m and t ≡ h2
m

Dm
t∗. (2.18)

Note that time is scaled by the characteristic time for a pressure perturbation to diffuse across the
mudstone. This process typically requires thousands to millions of years and thus we scale time to
study the pressure behaviour over these geological timescales. Pressure is scaled by the increase
in mudstone pressure due to compression over this characteristic time. This formulation helps to
highlight the effects of differences in layer properties on pressure behaviour. The dimensionless
equation for the mudstone is then

∂p∗
m

∂t∗
= 1 + ∂2p∗

m

∂z∗2 for z∗ ∈ [0, 1], (2.19)

with boundary conditions,
∂p∗

m
∂t∗

= γ + ν
∂p∗

m
∂z∗ at z∗ = 0,

∂p∗
m

∂z∗ = 0 at z∗ = 1,

⎫⎪⎪⎬
⎪⎪⎭

(2.20)

and initial condition p∗
m(z∗, 0) = 0. Two dimensionless parameters γ and ν emerge to characterize

the system

γ ≡ Γs

Γm
and ν ≡ Ds

Dm

hm

hs
. (2.21)

The parameter γ measures the rate of pressure build-up of the sandstone relative to that of
the mudstone, which depends on the material properties of each rock type and is independent
of strain rate. We refer to the parameter ν as the hydraulic capacitance ratio. The hydraulic
capacitance of a layer is given by the product of compressibility and volume (or thickness, in
one dimension). Hydraulic capacitance measures the change in bulk volume (or pore volume, in
the absence of venting) associated with a unit change in the pressure of that layer. If the sandstone
layer is thinner and less compressible than the mudstone, as would typically be expected, then
the sandstone will have a lower hydraulic capacitance than the mudstone (ν > 1). As a result, a
transfer of fluid from the mudstone to the sandstone would lead to a pressure decrease in the
mudstone and a pressure increase in the sandstone, but the increase would be larger than the
decrease by a factor of ν. This asymmetry is central to our results here because it implies that a
pressurized mudstone can fully recharge a sandstone that has been depressurized by venting ν

times, even without further tectonic compression. Here we note that a low-porosity mudstone
may have insufficient pore volume to recharge a high-porosity sandstone. We neglect this effect,
however, because in many cases, highly overpressured mudstones are underconsolidated, with
porosities comparable to typical sandstones.

We solve the system of equations (2.19) and (2.20) via Laplace transforms (electronic
supplementary material, S3) to arrive at

p∗
m = t∗ + (γ − 1)

{
t∗

1 + ν
+ 2ν

∞∑
j=1

cos{ξj(1 − z∗)}
cos ξj

1 − exp(−ξ2
j t∗)

ξ2
j (ν2 + ν + ξ2

j )

}
, (2.22)

where ξj is the jth solution to tan ξj = −ξj/ν. The first term t∗ is the pressure response to the
compression of the mudstone. The remaining terms express pressure communication between
the sandstone and mudstone. Two time-regimes emerge because compression begins to act
instantaneously whereas diffusion takes effect over a characteristic timescale h2

m/Dm. Our
dimensionless time variable t∗ is scaled by the latter and so diffusion becomes important for
dimensionless times t∗ ∼ 1 and larger. For early times t∗ 	 1, diffusion is negligible and layer
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Figure 2. Early-time compression solution for γ = 2. (a) Overpressure versus depth at times t∗ = (0.01, 0.25, 0.5, 0.75, 1)
(dark to light colours). (b) Time evolution of the average overpressure in the sandstone (solid yellow) and mudstone (dashed
brown).

pressures increase independently. It can be shown that this early-time behaviour is given by
(electronic supplementary material, S3.1)

p∗
m ∼ t∗ and p∗

s ∼ γ t∗ for t∗ 	 1. (2.23)

In this limit, the mudstone pressure is uniform in space. The mudstone and sandstone pressures
will rise in equilibrium if the layers have equivalent elastic properties (γ = 1). Otherwise, the
two pressures will increase at different rates, diverging linearly. Figure 2 illustrates this early-
time solution for γ = 2, meaning that the mudstone is twice as compressible as the sandstone.
The reciprocal of compressibility (i.e. stiffness) of a rock is a measure of the change in pressure
per unit change in strain. Therefore in this case, the sandstone pressurizes twice as fast as the
mudstone. Mudstones are generally expected to be more compressible than sandstones [38].
However, mudstones are also typically more overpressured than sandstones [18], contrary to the
model result above. This is because typically sandstones leak some overpressure via a baffled
pathway; without this leakage, the sandstone would be more overpressured during tectonic
compression. In the Levant Basin, the sandstones that feed fluid vents allow overpressure to
accumulate until seal failure, indicating that they cannot efficiently leak overpressure. Hence we
exclude leakage from our model.

For times t∗ ∼ 1 and larger, the homogenizing action of diffusion becomes increasingly
important. The system evolves toward a late-time (t∗ 
 1) behaviour characterized by

p∗
m ∼ γ + ν

1 + ν
t∗ + ν(γ − 1)

3(1 + ν)2 − γ − 1
2(1 + ν)

z∗(2 − z∗)

and p∗
s ∼ γ + ν

1 + ν
t∗ + ν(γ − 1)

3(1 + ν)2 , for t∗ 
 1.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.24)

In this late-time state, the mudstone and sandstone pressures both increase at a rate given
by (γ + ν)/(1 + ν), which is between the independent, early-time rates of the two layers. The
mudstone pressure tends toward a parabolic profile in z. If γ > 1, the mudstone pressure will
be maximum at the sandstone and decrease with depth (figure 3). If γ < 1, the mudstone pressure
will be minimum at the sandstone and increase with depth.

Figure 3 illustrates the impact of ν on the pressure behaviour at late times, taking γ = 2 for
comparison with the early-time behaviour in figure 2. Compression pressurizes the sandstone
more quickly than the mudstone, driving fluid from the sandstone into the mudstone. At ν = 5,
the sandstone is small and/or less compressible compared to the mudstone, thus the mudstone
pressure will not vary significantly from its compression-driven trajectory while the pressures
equilibrate. In the opposite limit (ν = 0.2), this transfer of fluid pressurizes the mudstone without
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Figure 3. Full compression solution for γ = 2, and three different values of ν . (a) Overpressure versus depth at times t∗ =
(0.01, 0.25, 0.5, 0.75, 1) (dark to light colours). (b) Time evolution of the average overpressure in the sandstone (solid yellow)
andmudstone (dashed brown).We useν to indicate the relative thicknesses of each layer, assumingν = hm/hs. We also show
the corresponding early-time solutions for each layer (solid grey for sandstone, dashed grey for mudstone).

notably depressurizing the sandstone. For any ν, however, both pressures grow in time and
will eventually reach the minimum compressive stress (electronic supplementary material, S2),
leading to hydraulic fracturing and fluid venting. We incorporate these phenomena into the
model in the next section.

(b) Fluid venting
Fluid venting is assumed to occur by hydraulic fracturing (figure 4). A vertical hydraulic fracture
forms when the pore pressure exceeds a critical value Pf , given by the sum of the minimum
horizontal compressive stress σmin and the tensile strength σT of the impermeable rock [14],

Pf = σmin + σT. (2.25)

Once venting begins, the sandstone pressure drops rapidly until the fracture closes, which we
assume occurs when Ps reaches σmin, giving an overall pressure drop of σT. Once closed, the
fracture heals and may be carried away from the venting point by viscous creep of the salt. Since
venting is geologically instantaneous, we incorporate venting into our model by augmenting the
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Figure 4. Schematic diagrams of our conceptual model for venting with corresponding overpressure–depth plots. Panels (a)–
(d) are as in figure 1a, but magnified into the sandstone layer (yellow) and the overlying sealing layer (grey). (a) A microscopic
incipient fracture in the sealing layer will remain closed as long as the sandstone overpressure ps (blue arrows) is less than
the critical fracture overpressure pf = σmin + σT (grey arrows), whereσmin here represents the minimum compressive stress
minus the hydrostatic pressure. (b) Once ps exceeds pf , a fracture will open and grow toward the surface. The fractured rock
has no tensile strength, so only σmin acts against the fracture. (c) An active vent sources fluid from the sandstone layer and
depressurizes it until ps falls back toσmin. (d) Once ps equalsσmin, the vent closes, allowing the fracture to heal. Panels (e)–(h)
show overpressure–depth plots corresponding to the incipient-crack scenario in (a), the fracture-growth scenario in (b), the
active-vent scenario in (c) and the closed-vent scenario in (d), respectively. (e) The pore overpressure in the sandstone ps is less
than the critical fracture overpressure at the top sandstone pf (grey). (f ) The fracture propagates and opens once ps exceeds pf .
(g) Venting occurs until ps falls back toσmin. (h) At which point, the vent closes.

(non-dimensional) sandstone boundary condition as follows:

∂p∗
m

∂t∗
= −σ ∗

Tδ(t∗ − t∗f ) + γ + ν
∂p∗

m
∂z∗ at z∗ = 0. (2.26)

where σT ≡ σ ∗
TΓmh2

m/Dm is a dimensionless tensile strength, t∗f is the dimensionless time when the
sandstone overpressure reaches p∗

f (i.e. p∗
m(0, t∗f ) = p∗

f ), and δ(t∗ − t∗f ) is the Dirac delta function.
This boundary condition imposes an instantaneous drop in sandstone pressure of σT at time t∗f .
The solution to the modified system of equations is separable into two parts: one for compression
(i.e. the solution derived above, equation (2.22)), and one representing the response to pipe
formation. We derive the latter solution for the overpressure response to pipe formation, p̃m

(dimensional), via Laplace transforms (electronic supplementary material, S4), arriving at

p̃m

σT
= − 1

1 + ν
− 2ν

∞∑
j=1

cos{ξj(1 − z∗)}
cos ξj

exp{−ξ2
j (t∗ − t∗f )}

ν2 + ν + ξ2
j

. (2.27)

At late times, the rightmost term vanishes as the layer pressures equilibrate by pressure diffusion.
In transferring fluid to the depressurized sandstone, the mudstone pressure drops by σT/(1 + ν),
while the sandstone pressure rises by σTν/(1 + ν). Increasing ν, for example by increasing the
size of the mudstone relative to the sandstone, reduces the sensitivity of the mudstone to venting
from the sandstone (figure 5). An infinitely large mudstone will have a constant mean pressure in
response to venting. Increasing ν also reduces the time needed for pressure equilibration because
depressurization is more localized to the mudstone–sandstone boundary.

Even in the absence of further tectonic compression, pressure diffusion from the mudstone can
fully recharge the sandstone layer after venting, potentially multiple times. However, it is likely
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Figure 5. Pressure evolution after a venting episode for three different values of ν in the absence of tectonic compression. (a)
Overpressure–depth curves at different timeswith time increasing fromdark to light. (b) Average-overpressure evolution of the
sandstone (solid yellow) and mudstone (dashed brown). The late-time equilibrium pressure is also shown (grey).

that compression continues to act once venting has initiated. In the next section, we explore the
combined system for compression and venting.

(c) Episodic venting
The solution for simultaneous compression and venting is obtained by superposing the two
independent solutions, equation (2.22) for compression and equation (2.27) for venting. In
particular, the linearity of the model allows episodic venting to be represented by a superposition
of venting responses at a set of fracture times. The nth fracture time tf ,n must be determined
numerically using the condition pm(0, tf ,n) = pf . An example scenario of continuous compression
with venting is illustrated in figure 6 for γ = 2 and ν = 5, in which case the mudstone is larger and
more compressible than the sandstone.

Without pressure diffusion (i.e. with compression only), our model reduces to the sawtooth
model proposed by Cartwright et al. [5] (figure 6a). With pressure diffusion, our full model
produces qualitatively similar sawtooth behaviour for the sandstone pressure (figure 6b).
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Figure 6. Comparison of average-overpressure evolution of the sandstone (solid yellow) andmudstone (dashed brown) layers
with compressiononly (a) andwithboth compressionandpressurediffusion (b). Early time solutionswithout ventingareplotted
in grey for each layer. Here, γ = 2, ν = 5, p∗f = 0.5 andσ ∗

T = 0.25.

However, the time between venting episodes (i.e. the venting period) is notably shorter because
pressure diffusion from the mudstone provides an additional contribution to pressure recharge.
As the mudstone pressure increases relative to the sandstone pressure, this diffusive flux into
the sandstone increases and the venting period decreases. The venting period tends toward a
constant as the mudstone pressure oscillates around its asymptotic mean value. This transition
to periodic behaviour occurs over the characteristic poroelastic timescale h2

m/Dm, i.e. over one
unit of dimensionless time (electronic supplementary material, S5). For example, figure 6b shows
that after the onset of venting at t∗ ≈ 0.4, the mudstone pressure effectively reaches its asymptotic
mean value at t∗ ≈ 1.4. If the poroelastic timescale is much greater than the duration of venting in
the system, then pressure diffusion is negligible and the sawtooth model is a good approximation.
If instead the poroelastic timescale is much shorter than the venting period, periodic venting
is established immediately after the first episode. In this periodic-venting limit, we can recover
explicit solutions for behaviour of this system.

(i) Periodic venting

Using the principle of superposition, the periodic solution for pressure in the sandstone is

p∗
s = γ + ν

1 + ν
t∗ + 2νσ ∗

T

∞∑
n=0

∞∑
j=1

1 − exp(−ξ2
j t∗)

ν2 + ν + ξ2
j

exp(−ξ2
j nτ∗), (2.28)

where τ∗ is the dimensionless venting period, scaled with the characteristic time for pressure
diffusion h2

m/Dm (and hence the dimensional venting period is τ ≡ τ∗h2
m/Dm). The periodic

venting solution (2.28) is a function of two dimensionless parameters, ν and τ∗. Figure 7 shows
how these parameters control the periodic recharge pathway.

Solving equation (2.28) for τ∗ (electronic supplementary material, S6) gives

τ∗ = σ ∗
T

γ + ν
. (2.29)

If τ∗ 	 1 (i.e. if the dimensional venting period τ is much shorter than the diffusive time
h2

m/Dm), tectonic compression is the dominant contribution to pressure recharge and we recover
a sawtooth; this is shown by the dashed black curve in figure 7a. If instead the venting
period is much longer than the diffusive time, τ∗ 
 1, diffusion equilibrates the sandstone and
mudstone pressures to ps/σT = pm/σT = ν/(1 + ν); both then rise at the same rate, due to tectonic
compression (solid black curve in figure 7a).
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Figure 7. Sandstonepressure-rechargebehaviour duringperiodic venting,with varyingτ ∗ andν .Wenormalize dimensionless
time t∗ by the dimensionless venting period τ ∗, such that t∗/τ ∗ ∈ [0, 1] over one period. Similarly, the dimensionless
sandstone pressure p∗s is scaled by the dimensionless tensile strengthσ ∗

T . With this normalization, equation (2.28) is explicitly
controlled by twodimensionless parameters,ν andτ ∗. (a) Varyingτ ∗ = (0.01, 0.1, 0.5, 2.5) atν = 5with limiting behaviours
for τ ∗ 	 1 (dashed black) and τ ∗ 
 1 (solid black). (b) Varying ν = (0.2, 1, 5, 50) at τ ∗ = 5 with limiting behaviour for
ν 	 1 (dashed).

These diffusive effects are also controlled by the capacitance ratio ν of the two layers.
If the hydraulic capacitance of the mudstone is negligible relative to that of the sandstone
(ν 	 1), we again recover the sawtooth model (dashed black curve in figure 7b). Increasing
ν (i.e. increasing the mudstone size) leads to faster diffusive pressure equilibration and a
higher equilibration pressure, much like in figure 5. However, increasing ν also decreases the
compressive pressurization rate of the equilibrated sandstone and mudstone layers, as shown
in figure 3. This means that a family of compressive and diffusive pressure recharge rates
can produce the same venting period. Consequently, observational measurement of the mean
venting period alone is insufficient to determine the dominant recharge mechanism. However,
the dominant recharge mechanism can be inferred using the expression for venting period
in combination with estimates of basin properties. To this end, we rewrite equation (2.29) in
dimensional terms as

τ = σT/Γs

1 + ν/γ
, (2.30)

showing that the period is determined by the tensile strength of the impermeable seal, the
tectonic pressurization rate in the sandstone and (1 + ν/γ ). This denominator is termed the
venting frequency multiplier, where ν/γ is a dimensionless number that quantifies the effect
of diffusion. Without pressure diffusion (i.e. for ν/γ 	 1), the frequency multiplier is unity and
the period reduces to the compression-only (sawtooth) period, σT/Γs (figure 8). Considering the
role of pressure diffusion divides the compression-only period or, equivalently, multiplies the
compression-only frequency by a factor of (1 + ν/γ ). If the frequency multiplier is much greater
than unity, neglecting its effect will lead to an erroneous diagnosis of the tectonic compression
rate from an observed venting period.

The results above enable us to estimate the contribution to pressure recharge from compression
relative to that of pressure diffusion over a single period τ . In the absence of diffusion,
compression will generate a (dimensionless) pressure of γ τ∗ per period. By definition, the
overpressure at the end of one period is the amount needed to trigger venting, σ ∗

T , so the relative
contributions from compression and diffusion are γ τ∗/σ ∗

T = (1 + ν/γ )−1, and (σ ∗
T − γ τ∗)/σ ∗

T =
ν/γ (1 + ν/γ )−1, respectively, having used equation (2.29). The ratio of the contribution from
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Figure 8. Venting period (left axis) and fraction of total pressure recharge from compression (right axis) as functions of the
venting frequency multiplier, (1 + ν/γ ), where the dimensionless ratio ν/γ measures the pressure recharge contribution
of pressure diffusion relative to that of compression. The two quantities have the same mathematical relationship with (1 +
ν/γ ) and therefore follow the same curve. The same function is the pressure recharge contribution from tectonic compression.
Insets show example compression-dominated (green dot) and diffusion-dominated (blue dot) pressure evolution curves for the
sandstone.

diffusion to the contribution from compression is then

ν

γ
= hm

hs

αm

αs

1 + λs/μs

1 + λm/μm
. (2.31)

This dimensionless ratio is the ratio of fluid volumes that would be expelled from each layer
during tectonic compression at constant pore pressure. Remarkably, this quantity is independent
of strain rate and permeability; it depends only on the thicknesses and poroelastic properties of
the layers. Permeability plays an important role in the timescales associated with compression and
diffusion, and thus in the shape of the recharge curve, but does not affect the overall contributions.
The dimensionless quantity (1 + λ/μ) can be rewritten as 1/(1 − 2v) where v is the Poisson ratio.
We can simplify equation (2.31) by recognizing that in most mudstone–sandstone successions,
vs ∼ vm, implying that (1 + λm/μm)/(1 + λs/μs) ∼ O(1), and the ratio of Biot coefficients αm/αs ∼
O(1) so that

ν

γ
∼ hm

hs
. (2.32)

In other words, the role of pressure diffusion relative to compression is controlled primarily by
the thickness of the mudstone relative to that of the sandstone. This equation means that for a
mudstone unit that is thick compared to the adjacent sandstone, diffusion dominates the pressure
recharge. Fluid venting phenomena are frequently observed in mudstone-dominated basins [3],
so pressure diffusion is likely to be a major contributor to pressure recharge for fluid venting
phenomena.

3. Discussion
The expression derived above for the venting period can be used to interpret observations of
episodic venting and to infer the history of tectonic compression. As a prototype of such analysis,
we consider the Oceanus pockmark trail located in the North Levant Basin [9]. Cartwright et
al. [5] performed a similar analysis, beginning with the assumption that the associated reservoir
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Table 1. Sandstone and mudstone properties used in estimating the compression rate at the Oceanus pockmark trail in the
North Levant Basin. We assign a truncated normal distribution for each parameter, taking all parameters to be uncorrelated.
Themean and standard deviation of each distribution, as well as theminimum andmaximum values at which the distributions
are truncated, are given by the values presented in the table. From these distributions, we use the model under a Monte Carlo
framework to calculate a distribution for the local strain rate at Oceanus.

parameter description mean s.d. min max reference

σT (MPa) salt tensile strength 2 1 0.5 4 [39]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hs (m) sandstone thickness 150 50 50 200 [5]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hm (m) mudstone thickness 2500 250 2000 3000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αs sandstone Biot coefficient 0.62 0.17 0.38 0.83 [23]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αm mudstone Biot coefficient 0.68 0.35 0.30 0.98
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vs sandstone Poisson ratio 0.24 0.04 0.20 0.30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vm mudstone Poisson ratio 0.25 0.05 0.15 0.30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ks (GPa) sandstone bulk modulus 18 8 8 30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Km (GPa) mudstone bulk modulus 15 17 5 33
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φs sandstone porosity 0.22 0.01 0.19 0.24 [40]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φm mudstone porosity 0.20 0.05 0.05 0.30 [41]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

log10 km (log10 m
2) (log) mudstone permeability −19 0.5 −22 −18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

η (mPa s) water viscosity 0.3 0.1 0.1 0.5 [42]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c
 (10−11 Pa−1) water compressibility 4.0 0.1 3.7 4.3 [43]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

was hydrostatically pressured (i.e. zero overpressure) immediately after the Messinian Salinity
Crisis. They then estimated that approximately 30 MPa of overpressure must have been generated
over a period of approximately 3 Myr to exceed the critical fracture pressure and initiate the first
venting episode, implying a pressurization rate of approximately 10 MPa/Myr prior to initiation
of venting. They attributed this pressurization rate solely to tectonic compression.

The Oceanus trail records 21 venting episodes from approximately 1.7 Ma until recently,
suggesting a mean venting period of approximately 80 kyr. During each venting episode, the
Messinian salt layer is re-fractured and fluid is expelled until the sandstone pressure drops by
the tensile strength of the salt, as described above. Extended leak-off tests suggest that this tensile
strength is in the range 2 ± 1 MPa [39]. Consequently, a pressurization rate of 25 ± 13 MPa Myr−1

would be required to recharge the reservoir to failure every 80 kyr. At Oceanus, the pre-salt clastic
succession from which the fluid is sourced is predominantly mudstone, with hm/hs ∼ 20 ± 7 [5].
Using typical sandstone and mudstone properties from table 1 in equation (2.31), we estimate the
venting frequency multiplier to be (1 + ν/γ ) ∼ 24 ± 12. With this result, we use equation (2.30) to
calculate the pressurization rate due to tectonic compression during the periodic-venting phase
to be Γs ∼ 1.4 ± 0.9 MPa Myr−1. This result is much lower than the total inferred pressurization
rate during periodic venting because the major recharge contribution is from pressure diffusion,
with a rate of 24 ± 14 MPa Myr−1. Additionally, the inferred pressurization rate due to tectonic
compression during periodic venting is much lower than that obtained by Cartwright et al. [5]
for the period prior to the onset of venting. One possible explanation for this discrepancy is that
tectonic compression has eased since the initiation of venting. However, it is also plausible that the
Messinian Salinity Crisis left the Oceanus reservoir significantly overpressured [44], rather than
hydrostatically pressured, and that the rate of tectonic compression has been roughly constant
since that time.

Tectonic compression of the North Levant Basin stems from activity on the Dead Sea Transform
fault, where geodetic strain rates of order 10−16 s−1 are observed [45]. From the pressurization
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rate calculated above, we can infer the strain rate associated with tectonic compression at the
Oceanus pockmark trail. Using typical sandstone properties (table 1), we use equation (2.14) to
estimate a horizontal strain rate of 1.6 ± 1.1 × 10−4 Myr−1 = 5.1 ± 3.7 × 10−18 s−1. This value is
much smaller than the observed rate of regional shortening because folding and thrusting across
the basin [12] accommodate a large portion of the shortening. Only the much smaller fraction
accommodated by compression is relevant to our model. Strain rates typically vary laterally
across sedimentary basins, so this measurement only provides a local strain rate at the Oceanus
pockmark trail.

The above analysis of the Oceanus pockmark trail relies upon the assumption that the
transition to periodic venting is complete. This transition occurs after the onset of venting over the
characteristic poroelastic timescale of the system h2

m/Dm (electronic supplementary material, S5).
For the Levant Basin, using estimated values from table 1, we calculate an expected poroelastic
timescale of 23 kyr. Within the 95% confidence interval, however, the poroelastic timescale could
be an order of magnitude higher or lower. This range is primarily due to the uncertainty in the
mudstone permeability. For the typical approximately 100 kyr venting period, this implies that the
transition to periodic venting is complete by the second venting episode or, at most, after a few
episodes. Venting observations from the Oceanus trail and other trails across the North Levant
Basin show no evidence of an initial transition to periodic venting. This suggests that the regional
poroelastic timescale is similar to or less than the approximately 100 kyr venting period and that
our assumption of periodicity is justified.

Oppo et al. [12] documented a set of 12 pockmark trails across the margin of the North
Levant Basin, where venting initiates at a similar time to Oceanus. Mean venting periods vary
between trails, ranging from approximately 30 to approximately 220 kyr. Equation (2.30) suggests
that these spatial variations in period can most likely be attributed to spatial variations in layer
thicknesses and the local tectonic strain rate. Moreover, the time of the first venting episode varies
significantly between trails; this is controlled by the local tectonic strain rate and the residual
overpressure from the Messinian Salinity Crisis. The time of the last observed venting event
also varies between trails, potentially associated with the time that compression ceases locally.
However, a given reservoir may continue to vent after tectonic compression ceases, driven by
pressure diffusion alone (electronic supplementary material, S8). The number of excess venting
episodes depends on the local hydraulic capacitance ratio and salt tensile strength.

Oppo et al. [12] showed that pipe trails have formed exclusively above anticlines across the
North Levant Basin. From this, one might infer that folding generates sufficient overpressure
for venting, despite our assumption of the contrary for the present model. Cartwright et al. [5]
estimate that growth of the Oceanus anticline has increased the reservoir trap capacity by 320 m
since the initiation of venting. Anticline growth generates overpressure in a high-permeability
reservoir through the lateral transfer of pressure to its crest from the surrounding overpressured,
low-permeability rock, which is the mudstone in this case [46]. If the reservoir has a parabolic
fold geometry with constant thickness, then the corresponding increase in overpressure is 1

3 (ρm −
ρg)g�h, where ρm is the density of the mudstone, ρg is the density of gas, g is the acceleration due
to gravity, and �h is the increase in trap capacity. Using density values from [5], we obtain an
increase in overpressure by lateral transfer of approximately 2 MPa. Additionally, an increase in
trap capacity will enable the accumulation of a thicker gas column, increasing overpressure due to
buoyancy by (ρg − ρw)g�h ∼ 1 MPa, where ρw is the density of water. The overpressure generated
in the sandstone due to fold growth is thus negligible, merely supplying enough overpressure for
one additional venting episode. Despite this, the additional overpressure (and high topography,
hence reduced compressive stress) associated with anticlines make them preferential sites for
venting.

However, the overpressure generated by fold growth is comparable to that generated by
tectonic compression, inferred to be 2.4 ± 1.5 MPa since the initiation of venting. The fundamental
difference between these overpressure mechanisms is that tectonic compression also pressurizes
the mudstone. For example, an overpressure increase in the mudstone of 1 MPa can provide
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an increase in overpressure in the sandstone of ν MPa via pressure diffusion. In mudstone-
dominated basins ν 
 1, thus a small amount of mudstone overpressure can drive many venting
episodes. This suggests that overpressure mechanisms that pressurize the mudstone, e.g. tectonic
compression, disequilibrium compaction and sea-level change are potent drivers of episodic fluid
venting in other sedimentary basins.

Our model can speculatively be applied to basins containing mud volcanoes, where a
sandstone layer may not be present. To do so, the modelled sandstone layer can be recast as
a fluidized mud region that depressurizes during venting. The thickness of the depressurized
region depends on details of the fracture mechanics of venting, and may vary as mud is expelled.
If this region is much smaller than the overall mudstone thickness, then it is likely that pressure
diffusion provides the dominant contribution to recharge. In the Eastern Mediterranean, the West
Nile Delta hosts linear trails composed of fluid-escape pipes and mud volcanoes. Sandstone
reservoirs are not observed, in contrast to the North Levant Basin. The West Nile Delta is
likely pressurized by hydrocarbon generation and lateral pressure transfer rather than tectonic
compression [11]. Despite these differences, similar approximately 100 kyr periods are observed
in the West Nile Delta [11]. This timescale is comparable to the poroelastic diffusion time for
the North Levant Basin, suggesting that recharge in this region is also controlled by pressure
diffusion.

The model is readily generalizable to other settings and scenarios. For example, the
impermeable sealing layer could be replaced with a permeable unit (e.g. mudstone) to study
the effect of pressure dissipation due to fluid migration through an imperfect seal. The model
could also be reformulated to include disequilibrium compaction as the active overpressure
mechanism (electronic supplementary material, S7). Disequilibrium compaction is a prevalent
driver of overpressure in low-permeability sediments [18], especially in basins with high
sedimentation rates [e.g. the South Caspian Basin, see 47]. For this mechanism, an increasing
compressive vertical stress acts on the system, rather than a horizontal compression. Much of our
qualitative findings will also apply for disequilibrium compaction.

Despite the widespread occurrence of venting phenomena, there are many basins comprising
overpressured mudstones that have not vented. Venting requires a mechanism that generates
overpressure faster than fluid flow can dissipate it, and that is active for long enough to achieve
critical overpressures. Therefore, lateral reservoir connectivity and/or poor vertical sealing can
inhibit fluid venting. Venting is also less likely to initiate at larger depths, where the critical
fracture pressure is larger. Once venting initiates, further episodes require pressure recharge in
the reservoir unit, from either sustained overpressure generation or by pressure diffusion from
an adjacent overpressured mudstone.

Our model invokes a variety of simplifying assumptions. These assumptions make the model
tractable and transparent, but also carry limitations. In reality, tectonic compression is unlikely to
be a constant-strain-rate process and compression may not be the sole overpressure mechanism
in a basin. Furthermore, basin stratigraphies seldom consist of uniform, horizontal layers; layer
topography and heterogeneity will affect the spatial distribution of overpressure and fracture
pressure, and thus also of venting loci. The sedimentary layers themselves are composed of rocks
with porosity-dependent permeability that do not behave perfectly poro-elastically. For example,
many sedimentary rocks may partially fluidize during sudden fluid expulsion. We have assumed
that the vented fluid is water, but in reality it is a mixture of water, natural gas and sediment.
However, we do not expect any of these features to change the key qualitative implications of our
model.

Many open questions remain regarding fluid venting phenomena that are not addressed by
this work. The mechanics of venting are not explicitly stated in the model; the high permeability
of the sandstone layer enables us to circumvent this. If the sandstone is also overlain by mudstone,
then we might expect that hydraulic fracturing occurs through the mudstone. But the mudstone
is also predicted to be overpressured and to recharge the reservoir during episodic venting. It
is unclear how a hydraulic fracture could propagate through a unit with a higher overpressure;
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perhaps the presence of natural gas and fluidized sediment enables this. This lack of clarity in the
conditions for venting motivates incorporation of fracture mechanics and mudstone fluidization
into our model. Furthermore, since the model contains only one spatial dimension, it cannot
be used to address observations such as the strong correlation of venting sites with areas of
high reservoir-layer topography. This strong spatial dependence can lead to clusters of multiple
venting sites in close proximity. For example, in the North Levant Basin margin [12], four
pockmark trails originate along the crest of the same folded sandstone reservoir and thus may
be hydraulically connected. A model that considers these spatial variations may be capable of
inferring basin properties such as reservoir architecture from dates of venting episodes.

4. Conclusion
We have developed and solved a one-dimensional model of pressure evolution of sedimentary
layers subject to horizontal tectonic compression, leading to episodic fluid venting. Our main goal
was to elucidate the interactions between the three fundamental ingredients of episodic venting:
pressure build-up, pressure diffusion and hydraulic fracturing. The main conclusions from the
study are as follows.

— In the absence of hydraulic fracturing, two time regimes emerge. At early times, the
pressure of each layer rises independently at a rate determined by the elastic properties
of the layer. At timescales corresponding to mudstone fluid flow (t 
 h2

m/Dm), layer
pressures equilibrate by pressure diffusion and rise at the same rate.

— Sustained tectonic compression will generate extreme overpressures required for
hydraulic fracturing of the sealing layer. Once hydraulic fracturing initiates, the
sandstone pressure drops rapidly. The sandstone pressure is then slowly recharged by
tectonic compression and pressure diffusion from the mudstone layer, leading to repeated
venting episodes.

— During episodic venting, the time interval between episodes tends towards a fixed
period, given by τ = σT/Γs/(1 + ν/γ ), where σT is the tensile strength of the seal, Γs is the
pressure build-up rate in the sandstone layer due to tectonic compression, and (1 + ν/γ )
is the venting frequency multiplier.

— The venting frequency multiplier (1 + ν/γ ) is determined by the dimensionless ratio ν/γ ,
which is independent of strain rate and permeability. When ν/γ is small, diffusion is
negligible compared to compression and the sandstone pressure evolves as a sawtooth
wave with a venting period τ ∼ σT/Γs. The period decreases with increasing ν/γ as the
additional contribution to pressure recharge from diffusion increases. Based on estimates
of sandstone and mudstone elastic properties, ν/γ is controlled by the ratio of thicknesses
of the mudstone and sandstone layers. Fluid venting phenomena are commonly found
in mudstone-dominated basins; we have shown that in these settings, pressure recharge
will be dominated by diffusion.

— More generally, we have shown that tectonic compression cannot be decoupled from
pressure diffusion. Episodic expulsion depends on more than simply the rate of
tectonic compression—pressure diffusion can markedly reduce the time interval between
episodes.

Data accessibility. Source code for the figures in this study is available from the Zenodo repository:
doi:10.5281/zenodo.7674720 [48].
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Supplementary material

S1. STORAGE EQUATION
Here, we follow the derivation of the storage equation by Verruijt (1969). Starting from conservation of mass of the fluid
ℓ and solid g phases,

∂ϕρℓ
∂t

+∇ · ϕρℓvℓ = 0, (33)

∂(1− ϕ)ρg
∂t

+∇ · (1− ϕ)ρgvg = 0, (34)

where ϕ is the porosity of the medium, ρi is the phase density and vi is the phase velocity. Assuming spatial variations
in phase densities are negligible, then

1

ρℓ

∂ϕρℓ
∂t

+∇ · ϕvℓ = 0, (35)

1

ρg

∂(1− ϕ)ρg
∂t

+∇ · (1− ϕ)vg = 0. (36)

For the solid phase, cg is the compressibility of the solid grains such that for the pure solid material, cg ≡ 1/ρg ∂ρg/∂p.
However, in poroelastic materials, grains compress in response to changes in both total isotropic stress σ and pore pressure
p.

We determine this relationship by considering an undrained compression of ∆p followed by a drained compression
of (−∆σ) − ∆p such that the overall change in pore pressure is ∆p and the overall change in isotropic stress is −∆σ
(stress is tension-positive). For an undrained deformation of magnitude ∆p, the change in grain density ∆ρg = cgρg∆p,
by definition. For a drained compression of magnitude (−∆σ)−∆p, the grains experience an amplified stress increase of
−(∆p+∆σ)/(1− ϕ), so

∆ρg = −cgρg
∆p+∆σ

1− ϕ
. (37)

Superposition of these two responses gives the change in grain density,

∆ρg = − cgρg
1− ϕ

(ϕ∆p+∆σ). (38)

If these changes occur over a time ∆t, the limit as ∆t → 0 is

∂ρg
∂t

= − cgρg
1− ϕ

(
ϕ
∂p

∂t
+

∂σ

∂t

)
. (39)

Using (39), we can simplify the solid mass conservation equation (36) to

− ∂ϕ

∂t
− ϕcg

∂p

∂t
− cg

∂σ

∂t
+∇ · (1− ϕ)vs = 0. (40)

Applying the definition of fluid compressibility cℓ ≡ 1/ρℓ ∂ρℓ/∂p to (35) gives

∂ϕ

∂t
+ ϕcℓ

∂p

∂t
+∇ · ϕvℓ = 0. (41)

We add (40) and (41) to eliminate the porosity derivative terms, resulting in

∂e

∂t
+ ϕ(cℓ − cg)

∂p

∂t
− cg

∂σ

∂t
= −∇ · q, (42)

where q ≡ ϕ(vℓ − vg) and ∂e/∂t ≡ ∇ · vg. We can eliminate the isotropic total stress from the equation using Terzaghi’s
principle, σ = σ′ −αp where the effective stress σ′ = e/c and α ≡ 1− cg/c with c denoting the compressibility of the solid
skeleton. It follows that

α
∂e

∂t
+ S

∂p

∂t
= −∇ · q, (43)

where the storativity S ≡ ϕcℓ + (α − ϕ)cg. Equation (43) is termed the storage equation by Verruijt (1969). The only
assumptions made in deriving this equation are that spatial variations in phase densities are negligible and that each
phase is linearly compressible.
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S2. STRESS CONDITIONS FOR HYDRAULIC FRACTURING
For this analysis, we assume that the initial compressive stress in the y-direction is less than the lithostatic stress. As
compression is acting in the x-direction, a vertical fracture will open aligned with the y-direction. In this case, the
condition for hydraulic fracturing is

Pf > −σyy + σT . (44)

Assuming a steady-state, hydraulic fracturing thus requires that the sandstone pressure Ps increases faster than −σyy,

∂Ps

∂t
> −∂σyy

∂t
. (45)

We use this condition to predict if hydraulic fracturing will occur under different stress conditions. If we assume ∂tσyy = 0,
then vertical hydraulic fracturing will always occur. However, if we instead assume ∂teyy = 0, then

(λs + 2µs)
∂e

∂t
= αs

∂Ps

∂t
− 2µsėxx. (46)

From the storage equation for the sandstone,

∂Ps

∂t
=

2αsµsėxx
α2
s + Ss(λs + 2µs)

− λs + 2µs

α2
s + Ss(λs + 2µs)

q

hs
, (47)

where q < 0 indicates flow from the mudstone into the sandstone. From the condition for vertical hydraulic fracturing,
we obtain

2µsėxx[αs(1− αs)− Ssλs]− [λs + 2µs(1− αs)]
q

hs
> 0. (48)

To simplify interpretation, we assume α ∼ 1, giving

ėxx < − q/hs

2µsSs
. (49)

If the mudstone is impermeable, q = 0, thus vertical hydraulic fracturing will never occur. Indeed, an additional flux from
the mudstone is required for fracturing when ∂teyy = 0. This only occurs when the sandstone is more compressible than
the mudstone, which is not commonly observed. Furthermore, if the sandstone is highly compressible, i.e., Ss is large, a
higher flux may be required to satisfy the inequality.

However, assuming ∂teyy = 0 is likely less physically realistic as pore pressure increases of, for example, ∼10 MPa
would lead to predictions of ∼10 MPa differential stresses; these stresses are typically relieved by faulting in natural
systems. For this reason we assume ∂tσyy = 0 in the main text.

S3. COMPRESSION SOLUTION
The Laplace transform F of a function f is defined as

F(s) =
ˆ ∞

0

f(t) exp(−st) dt. (50)

Transforming equations (19)–(20) to Laplace space using p∗m(z∗, 0) = 0 gives a second-order ordinary differential equation,

d2P∗
m

dz∗2
− s∗P∗

m = − 1

s∗
for z∗ ∈ (0, 1), (51)

with boundary conditions

P∗
m =

γ

s∗2
+

ν

s∗
dP∗

m

dz∗
at z∗ = 0,

dP∗
m

dz∗
= 0 at z∗ = 1.

 (52)

The solution to this system of equations is

P∗
m =

1

s∗2
+

γ − 1

s∗2
cosh(1− z∗)

√
s∗

cosh
√
s∗ + ν sinh

√
s∗/

√
s∗

. (53)
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The inverse Laplace transform can be expressed as

f(t) =
1

2πi
lim

T→∞

ˆ G+iT

G−iT

F(s) exp(st) ds, (54)

where G is greater than the real part of all the singularities of F(s). Assuming that the integrand is single-valued, it
follows from the Cauchy residue theorem that the integral equals the sum of the residues at all the poles s1, s2, ..., sj ,

f(t) =
∑
j

Res
s=sj

{
F(sj) exp(sjt)

}
. (55)

Equation (53) has poles at s∗ = 0 and at the zeros of the denominator of the second term, i.e.,

tanh
√
s∗ = −

√
s∗

ν
. (56)

The solutions to this equation are imaginary, so by substituting
√
s∗ = iξ we obtain the transcendental equation

tan ξ = − ξ

ν
. (57)

For the pole at s∗ = 0, using Taylor expansions we obtain the late-time solution

p∗m(z∗,∞) =
γ + ν

1 + ν
t∗ +

γ − 1

1 + ν

{
ν

3(1 + ν)
− 1

2
z∗(2− z∗)

}
. (58)

The residue of a quotient f(s)/g(s) at a simple zero, s0 is given by

Res
s=s0

(f/g) = lim
s→s0

f(s)

g(s)
=

f(s0)

g′(s0)
, (59)

hence the residues at s∗ = s∗j can be expressed as,

− 2ν(γ − 1)

∞∑
j=1

cos{ξj(1− z∗)}
cos ξj

exp(−ξ2j t
∗)

ξ2j (ν
2 + ν + ξ2j )

. (60)

Combining residues gives the desired solution,

p∗m =
γ + ν

1 + ν
t∗ +

γ − 1

1 + ν

{
ν

3(1 + ν)
− 1

2
z∗(2− z∗)

}
− 2ν(γ − 1)

∞∑
j=1

cos{ξj(1− z∗)}
cos ξj

exp(−ξ2j t
∗)

ξ2j (ν
2 + ν + ξ2j )

, (61)

which can be expressed more compactly, with

p∗m = t∗ + (γ − 1)

{
t∗

1 + ν
+ 2ν

∞∑
j=1

cos{ξj(1− z∗)}
cos ξj

1− exp(−ξ2j t
∗)

ξ2j (ν
2 + ν + ξ2j )

}
. (62)

S3.1 Early time compression
At early times, exp(−ξ2j t

∗) ∼ 1− ξ2j t
∗,

p∗m ∼ t∗ + (γ − 1)

{
1

1 + ν
+ 2ν

∞∑
j=1

cos{ξj(1− z∗)}
cos ξj

1

ν2 + ν + ξ2j

}
t∗. (63)

Therefore, the mudstone overpressure initially increases linearly with time. By applying the initial condition p̃∗m(z∗, 0) =
−H(−z∗), where H is the Heaviside function, to the fluid venting solution (27), we find that

∞∑
j=1

cos{ξj(1− z∗)}
cos ξj

1

ν2 + ν + ξ2j
=

(1 + ν)H(−z∗)− 1

2ν(1 + ν)
. (64)

Therefore,
p∗m ∼ {1 + (γ − 1)H(−z∗)}t∗, (65)
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i.e., p∗s = p∗m(0, t) ∼ γt∗ and, for z∗ > 0, p∗m ∼ t∗.

S4. FLUID VENTING SOLUTION
For fluid venting, we assert that at t∗ = t∗f the sandstone instantaneously drops in pressure by σ∗

T such that

∂p∗m
∂t∗

∣∣∣∣
z∗=0

= γ + ν
∂p∗m
∂z∗

∣∣∣∣
z∗=0

− σ∗
T δ(t

∗ − t∗f ). (66)

Transforming the augmented system of equations to Laplace space using p∗m(z∗, 0) = 0, we have

d2P∗
m

dz∗2
= P∗

m − 1

s∗2
, (67)

with boundary conditions

P∗
m =

γ

s∗2
+

ν

s∗
dP∗

m

dz∗

∣∣∣∣
z∗=0

− σ∗
T e−s∗t∗f

s∗
at z∗ = 0,

dP∗
m

dz∗
= 0 at z∗ = 1.

 (68)

The particular solution to this system of equations is

P∗
m =

1

s∗2
+

γ − 1

s∗2
cosh(1− z∗)

√
s∗

cosh
√
s∗ + ν sinh

√
s∗/

√
s∗

− σ∗
T e−s∗t∗f

s∗
cosh(1− z∗)

√
s∗

cosh
√
s∗ + ν sinh

√
s∗/

√
s∗

. (69)

We know the inverse transform of the first two terms from the solution for compression in the absence of venting (Sup-
plementary Material S3). The third term describes the system response to venting, thus we discard the former two terms
for the present analysis. We denote the venting response with p̃∗m. The third term of Eqn. (69) has residue at s∗ = 0,
giving the late-time solution

p̃∗m(z∗,∞) = − σ∗
T

1 + ν
. (70)

Adding the residue at the poles of the denominator s∗j , we get

p̃∗m = − σ∗
T

1 + ν
− 2νσ∗

T

∞∑
j=1

cos{ξj(1− z∗)}
cos ξj

exp{−ξ2j (t
∗ − t∗f )}

ν2 + ν + ξ2j
, (71)

where ξj is the j-th solution to tan ξ = −ξ/ν.

S5. TRANSITION TO PERIODIC BEHAVIOUR
To understand the pressure evolution without oscillations due to venting, we take the sandstone pressure to be a constant.
For simplicity, we set p∗s = 0 so the system of equations become

∂p∗m
∂t∗

= 1 +
∂2p∗m
∂z∗2

for z∗ ∈ [0, 1]. (72)

and
p∗m = 0 at z∗ = 0,

∂p∗m
∂z∗

= 0 at z∗ = 1.

 (73)

Solving this system in Laplace space gives

P∗
m =

1

s∗2

[
1− cosh(1− z∗)

√
s∗

cosh
√
s∗

]
. (74)

Equation (74) has a pole at s∗ = 0, with residue representing the steady-state solution

p∗m(z∗,∞) = − 1
2
z∗(2− z∗). (75)

24



The remainder of the poles are at the zeros of the denominator of the second term, i.e. s∗n = −(2n − 1)2π2/4 for n ∈ Z.
Combining residues gives the full solution,

p∗m = 1
2
z∗(2− z∗) +

16

π3

∞∑
n=1

(−1)n

(2n− 1)3
cos{(1− z∗)(2n− 1)π/2} exp{−t∗ (2n− 1)2π2/4}. (76)

Therefore, the average mudstone pressure evolves such that,

p∗m =
1

3
− 32

π4

∞∑
n=1

exp{−t∗ (2n− 1)2π2/4}
(2n− 1)4

. (77)

We compare the constant-pressure solution with the full solution for an example scenario in Fig. S1. There is good
agreement between the two solutions for the mudstone overpressure, with the constant-pressure solution generally following
the full solution but without the oscillations produced by venting. Minor deviations between solutions at early times
(t∗ ∼ 0.4) are explained by differences in their initial states.
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Figure S1: Average overpressure evolution of the mudstone layer (brown dashed) assuming that the sandstone
layer (solid yellow) has a constant pressure. We compare this constant-pressure solution with the full solution
from Fig. 6b, plotted in grey, with γ = 2, ν = 5, p∗f = 0.5 and σ∗

T = 0.25. The sandstone overpressure is fixed at
the time-average of the periodic venting solution, p∗s ≈ 0.4147. We initiate the constant-pressure solution at the
time of the first venting episode t∗ ≈ 0.3917.

S6. VENTING PERIOD
After many venting episodes have occurred, the system tends towards a state of periodic venting, with a (dimensionless)
time interval τ∗ between episodes. At late times of tectonic compression, sandstone pressure increases linearly with time.
Using the principle of superposition, we represent this system as

p∗s = t∗
γ + ν

1 + ν
+ 2νσ∗

T

N∑
n=0

∞∑
j=1

1− exp(−ξ2j t
∗)

ν2 + ν + ξ2j
exp(−ξ2jnτ

∗), (78)

where the number of previous venting episodes N is large. The two most recent venting episodes occur at t∗N−1 and t∗N ,
such that the pressures are given by

p∗s(t
∗
N−1) = t∗N−1

γ + ν

1 + ν
− 2νσ∗

T

N−1∑
n=0

∞∑
j=1

1− exp(−ξ2j t
∗
N−1)

ν2 + ν + ξ2j
exp(−ξ2jnτ

∗),

p∗s(t
∗
N ) = t∗N

γ + ν

1 + ν
− 2νσ∗

T

N∑
n=0

∞∑
j=1

1− exp(−ξ2j t
∗
N )

ν2 + ν + ξ2j
exp(−ξ2jnτ

∗),


(79)
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We solve for τ∗ using p∗s(t
∗
N ) = p∗s(t

∗
N−1). Taking N → ∞ gives

τ∗ =
σ∗
T

γ + ν
, (80)

as the dimensionless venting period.

S7. DISEQUILIBRIUM COMPACTION
Disequilibrium compaction in this system will act to increase the total vertical stress σzz. We assume a constant rate of
compressive vertical stress generation −σ̇zz (with σ̇zz ≥ 0) so from Terzaghi’s principle,

∂σ′
zz

∂t
= −σ̇zz + α

∂p

∂t
. (81)

Assuming sedimentation does not affect total stresses in the x and y directions,

(3λ+ 2µ)
∂e

∂t
= −σ̇zz + 3α

∂p

∂t
. (82)

Using the storage equation and Darcy’s law, we obtain

dps
dt

=
αsσ̇zz

3α2
s + Ss(3λs + 2µs)

+
3λs + 2µs

3α2
s + Ss(3λs + 2µs)

1

hs

km
η

∂pm
∂z

∣∣∣∣
z=0

at z = 0, (83a)

∂pm
∂t

=
αmσ̇zz

3α2
m + Sm(3λm + 2µm)

+
3λm + 2µm

3α2
m + Sm(3λm + 2µm)

km
η

∂2pm
∂z2

for z ∈ [0, hm]. (83b)

In a similar way as done for tectonic compression, we introduce

Dm =
km
η

3λm + 2µm

3α2
m + Sm(3λm + 2µm)

, Ds =
km
η

3λs + 2µs

3α2
s + Ss(3λs + 2µs)

, (84)

Γm =
αmσ̇zz

3α2
m + Sm(3λm + 2µm)

, Γs =
αsσ̇zz

3α2
s + Ss(3λs + 2µs)

. (85)

This selection of parameters recovers the same governing equations as for tectonic compression, Eqns. (15) and (16). This
allows us to provide solutions to both physical problems by solving one set of equations.
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S8. RESIDUAL VENTING
If compression suddenly stops, venting may continue due to pressure diffusion. We take the example presented in Fig. 6b,
and assert that compression stops at t∗ = 1.4, plotted in Fig. S2. Five further venting episodes are observed before the
mudstone and sandstone layers reach pressure equilibrium. The time interval between residual venting episodes increases
exponentially as the mudstone pressure approaches p∗f . The number of residual venting episodes will decrease by increasing
the pressure drop in the mudstone per episode. This is achieved by increasing the tensile strength of the impermeable
layer σ∗

T or decreasing the capacitance ratio ν. In some cases, no residual episodes are observed.
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Figure S2: Average overpressure evolution of the sandstone (solid yellow) and mudstone (brown dashed) layers
with compression stopping at t∗ = 1.4. The solution for the mudstone with ongoing compression is plotted in
grey. This example scenario follows Fig. 6b, with γ = 2, ν = 5, p∗f = 0.5 and σ∗

T = 0.25.
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