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Axisymmetric gas–liquid displacement flow under a confined elastic slab
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A circular Hele-Shaw cell bounded by a volumetrically confined elastic solid can act
as a fluidic fuse: during radially outward fluid flow, the solid deforms in response to the
viscous pressure field such that the gap expands near the inlet (at the center) and contracts
near the outlet (around the rim). If the flow rate exceeds a critical value, then the gap
at the outlet can close completely, interrupting/choking the flow. Here, we consider the
injection of gas into such a soft-walled Hele-Shaw cell filled with viscous liquid. Our
theoretical model and numerical simulations for axisymmetric flow driven by the injection
of an expanding gas bubble show that the bubble increases the critical flow rate of choking
via two mechanisms. First, as the interface approaches the rim, it reduces the length over
which the viscous pressure gradient deforms the solid, which increases the critical flow rate
above which choking occurs. Second, compression of the gas reduces the outlet flow rate
relative to the inlet flow rate. As a consequence, for large injection rates, a near-choking
regime is established in which the outlet flow rate becomes independent of the injection rate
and instead depends only on the instantaneous position of the interface. Our traveling-wave
model for the advancement of the bubble front will enable future reduced-order modeling
of nonaxisymmetric problems, such as viscous fingering.

DOI: 10.1103/PhysRevFluids.8.094005

I. INTRODUCTION

The interaction of two-phase viscous flows with soft deformable components is common to
many natural and industrial settings, including flow in soft porous media [1], in passive microfluidic
devices [2], and in biological systems. For example, in the pulmonary airway tree under pathological
conditions, air entering the compliant lungs encounters plugs of mucus that occlude its passageways
[3]. Other types of low-Reynolds-number fluid-structure interaction (low-Re FSI) have recently
been exploited for technological progress, for example, in improving the manufacturing quality
of products [4], personalizing diagnostic tools [5], and developing soft robotics [6]. Fundamental
understanding of such complex flows can be gained by studying much simpler model problems.

Low-Re FSI is common in microfluidics, where the small length scales and PDMS-based
flow cells naturally yield interactions between viscous flows and soft boundaries [7]. Moreover,
microfluidic devices often have a Hele-Shaw geometry and may contain even softer components for
functional reasons [8]. Many microfluidic analogs of electronic components, which passively reg-
ulate flow without external hardware, have previously been introduced. They include fluidic valves
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FIG. 1. Schematic of radially outward gas–liquid displacement in a Hele-Shaw cell bounded by a confined
elastic solid.

[9,10], capacitors [11], and diodes [12], as well as soft fuselike devices [13], in which a portion
of the wall is replaced by an elastic arc that can snap from one configuration to another, thereby
constricting the channel. However, instead of completely interrupting the flow, this particular device
relies on redirecting the fluid to another rigid channel, so that the soft component acts more like
a current-dependent switch. In the majority of microfluidic devices that involve fluid-structure
interactions, flow interacts with thin membranes or slender bodies. Even when interactions with
thick slabs of elastic material were explored in microfluidics, e.g., by Ref. [14], the wall was not
volumetrically confined, leaving the flow channel free to expand arbitrarily as fluid is injected.
By contrast, many natural systems, such as brain tissue and cerebrospinal fluid in the cranium
[15], are subject to volumetric confinement, which can generate novel fluid-structure interaction
(FSI) phenomena yet to be exploited in engineering applications. Hence, practical understanding of
confined microfluidic components is relatively underdeveloped.

Here, we study gas–liquid displacement in a volumetrically confined soft Hele-Shaw cell (soft
cell), as shown schematically in Fig. 1. The soft cell is an established testbed for studying low-
Re FSI. For single-phase flows, the system exhibits a critical “choking” behavior [16]: viscous
pressure gradients deform the soft plate, squeezing material from the inlet toward the outlet, where
it accumulates and bulges into the flow path. Beyond a critical injection rate, the outlet is occluded
entirely, preventing flow through the cell. Hence, the response of the soft cell is directly analogous to
that of a fuse. The choking effect is unique to volumetrically confined systems. In contrast, in a Hele-
Shaw cell in which one wall is replaced by a thin, unconfined elastic membrane, deformation can
occur via expansion, and the flow path remains unobstructed [17–19]. Other examples of confined
systems that display choking behavior are the single-phase flow of liquid through a column of
deformable hydrogel beads [20], and the two-phase gas-driven displacement of a mixture of aqueous
liquid and hydrophilic solid grains in a capillary tube [21]; in both of these examples, the displaced
grains compact to form an impermeable layer that obstructs the flow. Here, we examine two-phase
displacement flows in the soft Hele-Shaw cell and their impact on the choking phenomenon.

Building on the single-phase study of Box et al. [16], Peng et al. [22] examined gas injection
into liquid-filled soft cells, revealing a host of complexities arising from the displacement flow.
Their work focused on the viscous-fingering instability, which has been extensively studied in rigid
Hele-Shaw cells. At low flow rates, the interface between the two fluids is always circular (i.e.,
stable). However, if a less viscous fluid (e.g., air) displaces a more viscous fluid (e.g., glycerol)
at a sufficiently high rate, then the interface becomes unstable and develops distinct fingers that
subsequently compete, split, and branch, forming a complex interfacial pattern [23]. This fingering
instability can be suppressed to higher flow rates if one of the walls of the Hele-Shaw cell is replaced
by a thin, unconfined elastic membrane, which allows the injected volume to be accommodated in
large part by inflation rather than viscous displacement [24,25]. Interestingly, the deformation of the
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FIG. 2. Top view images from preliminary experiments with an approximately circular interface at various
times t from the start of the experiment. The injected gas bubble displaces glycerol (dyed blue) in the narrow
gap of a soft Hele-Shaw cell. Flow-induced deformation of the elastomer eventually leads to contact between
the soft slab and the glass plate in the vicinity of the cell rim (visible as a white band encircling the cell),
trapping the interface within the cell. The experimental parameters are: cell radius Rout = 60 mm and initial
gap b0 = 2 mm; elastomer thickness d = 15 mm, shear modulus G = 1.36 kPa and Poisson’s ratio ν = 0.495;
liquid viscosity μ = 0.72 Pa s and surface tension γ = 63 mN/m; imposed flow rate Q0 = 450 ml/min.

flow cell remains roughly axisymmetric and independent of the morphology of the displacement
front [26], unless the elastic membrane is very compliant [27]. By contrast, ramified interfacial
structures (fingers) reminiscent of those observed in rigid cells develop in the confined soft cell,
where deformations are far less pronounced but may be strongly localized around individual air
fingers. Comparison between experiments with fingering and an axisymmetric model revealed a
subtle interplay between viscous fingering and FSI in the soft cell that can either promote or
suppress choking, depending on finger morphology [22]. However, choking is also observed in
experiments where the interface remains approximately circular (Fig. 2). Here, choking is modified
by more fundamental aspects of the two-phase flow: namely, displacement of the viscous phase and
compression of the injected gas. These features were identified by Peng et al. [22] but were not
systematically studied.

For gas-driven flows, further complexity arises from the compression of the injected gas, which
may be significant at the typical viscous pressure variations of the displacement flow (i.e., a
significant fraction of atmospheric pressure; Peng et al. [22] measured gas gauge pressures up to
0.4 bar). In a typical displacement flow, the viscosity of the gas is negligible compared to that of
the displaced liquid, meaning changes in the density of the gas (i.e., compression) are spatially
uniform but coupled in time to the evolving driving pressure. This is distinct from compressible
gas flow in very long microchannels or microtubes, where the viscous stresses in the gas itself lead
to spatial variations in density [28,29]. In existing literature, gas compression is often neglected or
carefully avoided, e.g., by extracting liquid rather than injecting gas [30]. However, compression
is unavoidable in many practical settings, such as during the gas-driven displacement of granular
suspensions [31], during gas invasion into liquid-saturated porous media [32], during foam-driven
hydraulic fracturing [33], or in soft microfluidics carrying a viscous flow with a small amount of air
trapped in the system [34]. Fundamentally, gas compression produces unsteady flow rates, distinct
from the nominally constant injection rate set by a syringe pump, which are directly coupled to the
displacement flow. These unsteady dynamics can result in the sharp transition from quasisteady to
burstlike displacements in capillary tubes [35], delayed onset of the viscous fingering instability in
rigid Hele-Shaw cells [36], and stick-slip choking dynamics [37] and complex pattern formation
[31] in the gas-driven displacement of frictional granular suspensions in Hele-Shaw cells.

Even in the absence of viscous fingering and compression, displacement flows in deformable
geometries are inherently unsteady due to the time-evolution of viscous pressures as the interface
between the phases advances. In a soft cell, displacement of liquid by an inviscid gas reduces the
length of the region squeezed toward the outlet by viscous pressure gradients, a key mechanism by
which choking is suppressed [22]. In the soft Hele-Shaw cell, the evolution of viscous stresses and,
hence, the time-dependent injection rate are directly coupled to the FSI-mediated deformation of
the soft plate. We depart from the previous study of Peng et al. [22] and focus on the roles of gas
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compression and viscous pressure gradients on choking in an axisymmetric geometry by exploring
a mathematical model of an axisymmetric two-phase lubrication flow under a confined elastic slab.
Thus, we decouple the influence of the two-phase displacement from that of the viscous fingering
in experiments by Peng et al. [22].

This paper is laid out as follows. We present the axisymmetric governing equations and nondi-
mensionalization in Sec. II, followed by a description of the gas–liquid displacement flow at low
injection rates in Sec. III. For higher flow rates, we study the impact of gas–liquid displacement on
choking in Sec. IV, by relating the deformation of the elastomer to the proximity of the bubble to
the cell rim (Sec. IV A) and identifying a near-choking regime when the compression of the gas is
significant (Sec. IV B). We investigate the dynamics of the advancing bubble front in Sec. V. We
summarize and discuss the results in Sec. VI.

II. THEORETICAL MODEL

We adapt the model and numerical simulations presented and validated by Ref. [22] to account
for compression of the injected gas, in the form of a nonlinear coupling between the rate of change
of air volume in the cell and the air pressure in the cell.

A. Governing equations

The setup is shown in Fig. 1. We consider a Hele-Shaw cell of initial (relaxed) gap thickness b0,
bounded by a rigid wall below and by an elastic slab above. The elastic slab is a cylinder of radius
Rout, thickness d � Rout, and shear modulus G that is confined both around the outer rim and from
above within a rigid mould. The cell is initially filled with liquid of viscosity μ. A gas bubble is
injected at the nominal volumetric flow rate Q0 at the center of the cell, displacing the liquid and
also deforming the elastomer. We neglect inertia and gravity, as well as the compressibility of the
solid and of the liquid.

We employ cylindrical polar coordinates (r, θ, z) with the surface of the undeformed elastic solid
located at z = 0, and the center of the cell at r = 0. We assume axisymmetry, as discussed above,
so that there is no explicit dependence on the azimuthal angle θ .

One key assumption in our analysis is that the initial cell gap b0 and the vertical deformation
w are small compared with the initial slab thickness d , i.e., that b0,w � d . As a result, the gap
thickness can change significantly from its initial value, while the strains in the elastic solid remain
small, allowing us to adopt linear elasticity. For a deformation characterized by displacement us,
stress tensor σ s, and pressure ps = −(Tr σ s)/3, the equations for linear elasticity, incompressibility,
and mechanical equilibrium in the solid take the form

σ s = −psI + G[∇us + (∇us)T ], ∇ · us = 0, (1a)

0 = ∇ · σ s = −∇ps + G∇2us, (1b)

in the solid domain 0 � r � Rout, 0 � z � d . Here, Tr denotes the trace, ∇ = er∂r + eθ (1/r)∂θ +
ez∂z is the gradient operator with er , eθ , and ez the coordinate unit vectors, I is the identity tensor,
and superscript T denotes transpose. We impose that the solid is adhered to the mould and that there
is no singularity at the center,

us = 0 at r = Rout and at z = d, us
r = ∂rus

z = 0 at r = 0. (2)

The solid is coupled to the flow in the gap via the vertical displacement w(r, t ) of the surface and the
gauge pressure p(r, t ) on the surface (measured relative to atmospheric pressure), while the viscous
shear stress from the flow on the surface can be neglected due to the assumption that b0,w � d ,

us
z

∣∣
z=0 = w, σ s

zz

∣∣
z=0 = −p, σ s

rz

∣∣
z=0 = 0. (3)
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The local gap b(r, t ) is related to the vertical deformation w(r, t ) of the solid surface by

b(r, t ) = b0 + w(r, t ). (4)

For the flow, we split the domain into two parts. In the bubble region r < R(t ), the pressure is
spatially uniform:

p(r, t ) = pb(t ) in r < R(t ). (5)

In the liquid region r > R(t ), we adopt the standard Hele-Shaw assumption that the pressure is
vertically uniform and equal to p(r, t ) to leading order in b0/Rout, satisfying the lubrication equation

ḃ = ∇H ·
(

b3

12μ
∇H p

)
in r > R(t ). (6)

Here, the over-dot is the partial derivative with respect to time and ∇H = er∂r + eθ (1/r)∂θ is the
horizontal gradient operator. (Note that we neglect any horizontal velocity from the solid onto the
fluid, due to b0 � d .) We do not model the advancing gas–liquid interface at the displacement
front r = R(t ) in detail. Instead, following Peng et al. [38], we employ approximate kinematic and
dynamic boundary conditions appropriate for a growing bubble in a Hele-Shaw cell with rigid and
parallel walls,

(1 − f1)Ṙ = − b2

12μ

∂ p

∂r
, p − pb = −2γ

b
(1 + f2) − π

4

γ

R
at r = R+. (7a)

These conditions depend on the instantaneous capillary number Ca = μṘ/γ via two fitting func-
tions,

f1(Ca) = Ca2/3

0.76 + 2.16 Ca2/3 , f2(Ca) = Ca2/3

0.26 + 1.48 Ca2/3 + 1.59 Ca, (7b)

which, respectively, describe the thickness of the residual liquid films on the cell walls behind the
front and the additional pressure drop due to viscous resistance near the front.

Initially, the cell is undeformed and contains a small bubble of radius Rinit (which we take to be
Rinit = d/2 unless otherwise specified),

w|t=0 = 0, R|t=0 = Rinit. (8)

At the cell outlet r = Rout, we impose atmospheric pressure (i.e., zero gauge pressure) and let Q(t )
denote the flow rate of liquid leaving the cell,

p|r=Rout = 0, Q(t ) = −2πRout
b3

12μ

∂ p

∂r

∣∣∣∣
r=Rout

. (9)

Here, we have neglected the contribution to the viscous pressure drop from the thickness �rim of the
rim of the mould: Past the edge of the elastic solid, the rim creates a region of constant cell gap
b = b0, which could be accounted for by solving the lubrication equation (6) with the given flow
rate Q(t ), resulting in the alternative pressure condition p = (Q/2π ) ln(1 + �rim/Rout ) at r = Rout,
but we neglect this effect as �rim/Rout � 1, and use Eq. (9) instead.

B. Gas injection models

Due to incompressibility of the liquid and solid, the outlet flow rate Q(t ) is also the rate of change
of gas volume in the cell. We assume in all cases that gas is injected at a constant nominal flow rate
Q0. If the compression of the gas is negligible, then we simply have

Q(t ) = Q0. (10)

However, the elevated pressure pb(t ) in the bubble compresses the gas, which may lead to a
significant deviation between Q(t ) and Q0. We assume that the heat generated by compression is
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rapidly lost to the environment, so that the gas can be approximated as isothermal. If the mass of
gas in the system has volume Vu(t ) under atmospheric pressure pa, then, after compression to an
absolute pressure pa + pb(t ) its volume is Vb = Vu/(1 + pb/pa). The compression of the injected
gas proceeds differently depending on the method of its injection, and we consider two different
methods that have been used in experiments [22]. For injection using a syringe pump at a nominal
rate Q0, the pump chamber, tubing and bubble together form a sealed mass of gas with original
volume Vu = Vinit , so the flow rate is

Q(t ) = Q0 + V̇b = Q0 + d

dt

[
Vinit

(1 + pb(t )/pa)

]
(syringe pump). (11a)

For injection from a pressurized gas bottle with pressure � pa via a needle resistor tuned to result
in a fixed volume flow rate Q0 of atmospheric-pressure gas downstream, the total uncompressed
volume of air in the system increases as Vu = Vinit + Q0t , where Vinit is the initial volume of air in
the cell and the tubing downstream of the resistor, so the flow rate is

Q(t ) = V̇b = d

dt

[
Vinit + Q0t

(1 + pb(t )/pa)

]
(pressurized bottle). (11b)

Although the two expressions (11) are similar, and approximately equal when Vinit is sufficiently
large [35], an important difference between the two injection methods is how small Vinit could
reasonably be in practice. For injection using a syringe pump, the initial gas volume must be at least
as large as the volume of the flow cell, to allow the injection to proceed until the bubble reaches the
rim of the cell. For injection using a pressurized bottle, however, the initial gas volume can be much
lower, just equal to the volume of the initial bubble in the cell, assuming that the tubing volume can
be neglected. As we do not seek to investigate the effects of varying Vinit in detail, we simply choose
to use

Vinit = πb0R2
out (syringe pump), Vinit = πb0R2

init (pressurized bottle), (12)

which are representative of typical experimental conditions for each injection method. We note that
the difference in results between the two cases is due to both the difference between the methods
(11) and the different choices of initial gas volume (12). The role of these differences and their effect
on the two-phase displacement in a rigid cell are investigated in detail in Cuttle et al. [36].

C. Nondimensionalization

We nondimensionalize the governing equations by scaling lengths with the solid thickness d ,
scaling deflections with the initial gap bo, and seeking a balance between all terms in the lubrication
equation (6). Thus, the nondimensional quantities are given by

(x∗, R∗) = (x, R)

d
, (us∗,w∗, b∗) = (us,w, b)

b0
, (p∗, p∗

b, ps∗, σ s∗) = (p, pb, ps, σ s)

Gb0/d
,

t∗ = t

12μd3/
(
Gb3

0

) , Q∗ = Q

2πGb4
0/12μd

, (13)

and the resulting nondimensional parameters are

R∗
out = Rout

d
, Q∗

0 = 12μQ0d

2πGb4
0

, 	∗ = dγ

Gb2
0

, C∗ = Gb3
0

12d2γ
, H∗ = π

4

b0

d
	∗,

R∗
init = Rinit

d
, p∗

a = pa

Gb0/d
, V ∗

init = Vinit

2πb0d2
. (14)

Here, R∗
out is the nondimensional radius of the elastic slab, or equivalently its aspect ratio, and is

assumed to be moderately large, while Q∗
0 is a nondimensional flow rate and measures the strength

of the FSI in the cell. These two are the main parameters, and also apply to single-phase flow. The
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three parameters 	∗, C∗, and H∗ are related to the role of surface tension, and are in fact related by
	∗ = (b0/d )/(12C∗) = (d/b0)(4/π )H∗, so only two of the three are independent.

From here on, we use only nondimensional quantities, dropping the asterisks for simplicity. The
resulting nondimensional forms of most of the governing equations (1)–(12) are then obtained by
simply setting 12μ = G = b0 = d = 1 and replacing π in Eqs. (9) and (12) by 1/2. The exceptions
are the bubble front conditions (7a), which become

(1 − f1)Ṙ = −b2 ∂ p

∂r
, p − pb = −2	

b
(1 + f2) − H

R
at r = R+, (15)

with f1 and f2 functions of Ca = CṘ.
We solve this system numerically using first-order implicit integration in time (backward Euler)

and second-order finite differences in space; see Appendix for details. We typically terminate the
simulation when the distance Rout − R from the bubble to the rim decreases below 0.1, in which
case we deem the bubble to be escaping the cell, or when the minimum cell gap

bmin(t ) = min
r

b(r, t ), (16)

which typically occurs at a well-defined bulge near the rim, decreases below 0.05, in which case we
deem the cell to be choking, as increasingly fine numerical resolution in space and time would be
required to resolve the flow past these thresholds. When the cell is deemed to be choking, increasing
the resolution of the simulations indicates that bmin continues to decrease, and would reach zero in
finite time which traps the bubble in the cell, rather than taking infinite time to decay to zero which
might allow the bubble to escape. However, the model becomes invalid when the gap is too small;
we discuss this issue further in Sec. VI.

The material parameters used in the experiments by Peng et al. [22] correspond to values for the
nondimensional parameters in the ranges 4 � Rout � 25.4, 0.02 � Q0/Rout � 100, 0.1 � 	 � 2.5
and 180 � pa � 1000, with C and H being related to 	 via the ratio b0/d which ranged between
0.04 and 0.3. This motivates the parameter values studied in this paper.

III. EXPANSION OF THE BUBBLE BELOW THE CHOKING THRESHOLD

Throughout this section, we focus on the specific value Rout = 20 for the cell radius and Q0 = 20
for the nondimensional injection flow rate, which is below Q0 ≈ 1.4Rout at which the single-phase
system is expected to choke [16].

A. Review of single-phase flow (no gas)

We first briefly review the single-phase case, in which there is no gas in the system and flow
in the liquid-filled cell is driven by injection of more of the same liquid (so that the lubrication
equation (6) holds throughout the domain). Figures 3(a) and 3(b) show the cell deformation and
pressure at various times from a simulation with Q0 = Rout = 20.

We observe that the solid deformation and flow are initially localized near the cell center (inlet)
r = 0 and the rim (outlet) r = Rout. The injected fluid expands the gap near r = 0 and pushes
the solid outward, which in turn bulges near the outlet and squeezes fluid out of the cell at the
injection rate. As time passes, the deformation of the solid reaches a steady state, with the pressure
profile driving a steady flow through the cell. For a rigid cell, the steady-state pressure profile
p = Q0 ln(Rout/R) would be reached instantaneously [dotted curve in Fig. 3(b)].

The slab deformation is driven by the gradient in normal stress (i.e., pressure) squeezing the solid
toward the rim (rather than by the shear stress from the fluid, which is neglected in this model).
Away from the injection point and the rim (i.e., at distances larger than the solid thickness, r �
1 and Rout − r � 1), the solid can be modeled using a long-wave approximation (analogous to
fluid lubrication theory) [16,39], which yields the horizontal displacement profile and the surface
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FIG. 3. Numerical results for incompressible flow with Q0 = Rout = 20. Top: Snapshots of channel
height/deformation profiles (left) and pressure profiles (right) at various times for (a), (b) single-phase flow,
(c), (d) two-phase flow without surface-tension (ST) effects (	 = H = C = 0), and (e), (f) two-phase flow
with surface-tension effects (	 = 1, H = 0.1π/4, C = 0.1/12). In panel (b), the pressure profile in a rigid
cell (dotted curve) is shown for comparison. In panel (c), the vertical dotted lines indicates the position of
the displacement front. In panel (e), the dotted curves correspond to the bubble boundary, indicating both the
position of the displacement front and the thickness of the residual films. Bottom: Time evolution of (g) the
bubble radius R, (h) the bubble pressure pb, and (i) the minimum cell gap bmin, as well as (j) bmin plotted
against R, from panels (c)–(f). In panels (g), (h), results from a rigid cell with no surface tension are shown for
comparison. In panel (i), single-phase results from panels (a), (b) are also shown.

deflection

us
H ≈ −1 − z2

2
∇H p, w ≈ −∇H ·

(
1

3
∇H p

)
. (17)

This explains the somewhat surprising result that there is negligible vertical deflection, w � 1, for
intermediate values of r in Fig. 3(a), as the harmonic pressure field results in zero vertical deflection
and a steady flow. As a result, the steady-state pressure profile in the approximately flat part of the
elastic cell differs from that in a rigid cell by an additive constant, corresponding to the additional
pressure drop due to the constriction near the rim.

B. Two-phase flow with incompressible gas

We now consider the injection of gas. We first neglect any effects of gas compression by imposing
the incompressible injection law (10), and compare the single-phase case discussed previously
with a two-phase simulation without surface-tension effects (	 = H = C = 0) and a two-phase
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simulation with surface-tension effects (	 = 1, H = 0.1π/4 and C = 0.1/12 corresponding to a
dimensional ratio b0/d = 0.1).

With no surface tension [Figs. 3(c) and 3(d)], the gap initially expands near the center and
constricts near the rim, as in the single-phase case, and the pressure profiles are similar outside
of the bubble region. As the bubble grows outward, the cell relaxes toward its undeformed state
behind the advancing bubble front [the long-wave approximation (17) for the solid yields w ≈ 0 for
a spatially uniform pressure p = pb]. A localized region of expansion travels with the bubble front,
with the solid being squeezed toward the rim on the liquid side while not being squeezed in either
direction on the gas side. Near the rim, the bulge initially grows (or equivalently the minimum cell
gap bmin decreases) and then approaches a steady state [Fig. 3(i)], just like for single-phase flow.
However, as the bubble approaches (i.e., R → Rout), the size of the liquid region (over which the
solid is being squeezed toward the rim by the viscous pressure gradient) reduces, and hence the
solid starts to relax [Fig. 3(j)]. This is the key mechanism by which the inviscid bubble, due to
its proximity to the rim, mitigates the tendency of the system to choke. We will revisit it later in
Sec. IV A.

The time evolution of the bubble radius R [Fig. 3(g)] closely follows the prediction from a rigid
cell, in which conservation of volume yields R2 = R2

init + 2Q0t . This is because the deformation of
the soft cell has a relatively small effect on the distribution of the fluids. The bubble pressure pb

[Fig. 3(h)] initially increases as the bulge gap constricts near the rim, but eventually decreases as
more and more viscous liquid is replaced by inviscid gas. Due to the constricting bulge near the rim,
the pressure remains slightly above the value pb = Q0 ln(Rout/R) it would have in a corresponding
rigid-walled cell.

When we include surface tension in the model [Figs. 3(e) and 3(f)], the pressure has a capillary
jump at the bubble front (controlled by 	 and H), which changes the deformation profile in its
vicinity. The pressure jumping from a higher value in the bubble to a lower value in the liquid
causes the gap to expand immediately behind the bubble front and contract immediately ahead of it
[Fig. 3(e)], as compared with the profile near the interface without surface tension [Fig. 3(c)]. When
the bubble approaches the rim, the bulge initially grows slightly due to the pressure jump, before it
relaxes due to the reduction in size of the liquid region [Figs. 3(i) and 3(j)].

The evolution of the bubble radius [Fig. 3(g)] changes slightly due to the change in the cell
deformation, and also because of the thin residual liquid films being deposited on the cell walls
[Fig. 3(e)], controlled by the parameter C. Finally, the bubble pressure [Fig. 3(h)] is larger compared
with the simulation without surface tension because of the capillary pressure jump.

C. Two-phase flow with compressible gas

Next we turn our attention to the effects of the gas compression. As can be seen from equa-
tions (11), compression of the gas simply alters the rate of change of the bubble volume, Q(t ), so
that it deviates from the nominal value Q0 that is imposed by injection. As a result, the mechanisms
for the deformation of the cell, discussed above, remain largely unchanged, but the dynamics of the
system may be affected by the varying flow rate Q(t ).

For simplicity, we neglect the effects of surface tension (i.e., set 	 = H = C = 0), and consider
a few different values of the atmospheric pressure pa. The results of our numerical simulations are
shown in Fig. 4, in which we plot the time-evolution of the bubble radius R(t ), the rate of change
Q(t ) of the bubble volume in the cell, the bubble pressure pb(t ) and the minimum cell gap bmin(t ), for
injection using either a syringe pump (left column) or a pressurized bottle (right column). We note
that, despite the different governing equations (11) and intial gas volumes (12), the two injection
methods produce qualitatively similar results.

For large pa, which corresponds to the typical gauge pressure in the cell being small compared
with atmospheric pressure, the effect of gas compression is negligible: The flow rate Q(t ) is
approximately equal to the nominal value Q0, and the evolution of the bubble radius R, bubble
pressure pb and minimum cell gap bmin follow the results from the incompressible model.
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FIG. 4. Numerical simulations with gas compression using the two injection models (11), for nominal flow
rate Q0 = Rout = 20 and four values of the atmospheric pressure parameter pa, without surface tension. Time
evolution of (a), (b) the bubble radius R, (c), (d) the liquid flow rate Q exiting the cell, (e), (f) the bubble
pressure pb, and (g), (h) the minimum cell gap bmin. Results from an incompressible simulation (10), which
corresponds to pa → ∞, are shown for comparison.

As pa is reduced, the effect of compression becomes significant: The injection initially drives
only a small fluid flow Q(t ), while the bubble pressure rises and the gas compresses. As the bubble
expands and the amount of viscous fluid in the cell reduces, the resistance to flow in the cell
decreases, and the bubble attains a maximal pressure before starting to depressurize. However, if
there is any remaining overpressure when the bubble reaches the rim, then the flow rate diverges.
Also, for larger compressibility (lower pa), the bubble reaches the rim later. These results are
qualitatively similar to those in a rigid cell [36] or a rigid capillary tube [35]. In particular, for
a rigid cell with large Vinit � R2

out/2, the compressibility number defined by Cuttle et al. [36] is,
after the nondimensionalization in Eq. (14), C = 4Q0Vinit/(R2

out pa), and is the main parameter that
predicts whether the flow rate diverges (C > 1) or not (C � 1) as R → Rout in Fig. 4(c).

The reduction in flow rate due to gas compression initially is the second key mechanism by
which the bubble can mitigate the tendency of the system to choke. This will be explored further in
Sec. IV B.

IV. THE EFFECTS OF THE BUBBLE ON CHOKING

A. The proximity of the bubble to the rim

We assess how choking is influenced by the proximity of the inviscid gas bubble to the cell rim by
studying the system at a larger flow rate, Q0 = 29 = 1.45Rout, that is slightly above the single-phase
choking threshold of Q0 ≈ 1.4Rout [16]. For simplicity, we once again neglect gas compression and
surface tension. The evolution of the gap profile near the rim is plotted in Fig. 5(a): The bulge grows
in amplitude and approaches the opposite wall as the minimum gap bmin shrinks toward zero. In
this case, for which the bubble has initial radius Rinit = 0.5, the bulge develops and the cell chokes
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FIG. 5. Numerical results for the channel gap profile b(r, t ) near the cell rim, for incompressible flow with
flow rate Q0 = 29 = 1.45Rout , which is slightly above the single-phase choking threshold, without surface
tension. Snapshots are shown with nondimensional time increments of 0.2 from the first to last times indicated,
and two different values of the initial bubble radius Rinit are considered. (a) Rinit = 0.5, with single-phase results
shown for comparison. (b), (c) Rinit = 11, split between (b) the constricting phase and (c) the relaxing phase,
with quasisteady profiles with the same radius and pressure drop shown for comparison in panel (c).

before the displacement front is near enough to the rim to have any mitigating effect. Indeed, the
profiles agree closely with analogous ones from a single-phase simulation (dashed curves).

Profiles from a simulation with larger initial bubble radius, Rinit = 11, are shown in Figs. 5(b) and
5(c). The bulge initially grows [Fig. 5(b)] and the channel nearly chokes. However, as the bubble
grows, it reduces the amount of liquid that is squeezing the solid toward the rim. This reopens the
channel [Fig. 5(c)] and choking is averted.

To illustrate how the presence of the bubble near the rim helps the bulge to relax and therefore
reduces the tendency of the system to choke, we consider how the bulging changes for different
values of the initial bubble radius Rinit . Figure 6(a) shows the time evolution of the minimum cell
gap bmin, and the same data is plotted in Fig. 6(b) as a function of the interface position R. For
Rinit � 10, the bubble does not arrive at the rim early enough to mitigate choking, so bmin shrinks
steadily to zero, reaching it at a finite value of R < Rout. As a result, the system chokes around
t ≈ 1.5, just like in the single-phase case [dashed curve in Fig. 6(a)]. For Rinit � 11, bmin initially

FIG. 6. Numerical results for the evolution of the minimum cell gap bmin, for incompressible flow with flow
rate Q0 = 29 = 1.45Rout, which is slightly above the single-phase choking threshold. The evolution is plotted
as a function of (a), (c) time t and of (b), (d) the bubble radius R for the two-phase case (a), (b) without surface
tension and (b), (d) with surface tension (	 = 1, H = 0.1π/4, C = 0.1/12). Different colors correspond to
different initial values Rinit = 8, 10, 11, 12, 14, 16, 17, 18, as indicated by the circles in panels (b), (d). The
curve corresponding to the profiles shown in Figs. 5(b) and 5(c) is labeled as Rinit = 11 in panel (a). The
single-phase result is also shown for comparison in panels (a), (c). In panel (b), the vertical dash-dotted line
shows the choking boundary predicted by the quasisteady analysis [Eq. (18)].
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FIG. 7. Numerical results from the quasisteady approximation (18), for Rout = 20 and without surface
tension. The scaled flow rate Q/Rout is plotted as a function of (a) bubble pressure pb and (b) minimum cell gap
bmin, for various values of the bubble distance from the rim Rout − R. The color-coding is explained with the
legend in panel (c). (c) The maximal Q/Rout plotted as a function of Rout − R. In all panels, analogous results
for a two-dimensional cell are plotted with dash-dotted curves. In panel (a), crosses indicate the values of pb

and Q/Rout at the various distances in the time-evolving simulation from Figs. 5(b) and 5(c).

shrinks, but does not vanish before the bubble is close enough to mitigate the bulge; thereafter, bmin

returns to one instead of decaying to zero.
Figures 6(c) and 6(d) show analogous simulations with surface-tension effects. The capillary

pressure drop across the bubble front constricts the gap in front of the bubble (and expands it behind)
[see Fig. 3(e)] which partly offsets the relaxing effect of the bubble on choking. Hence, the bubble
needs to be closer to the rim to prevent bmin decreasing to zero. In these simulations, the system
chokes for Rinit � 16 and only avoids choking for Rinit � 17. We do not study the effects of surface
tension further.

A further observation that can be made in Fig. 6(b) is that when the bubble approaches the rim,
the curves from different simulations collapse onto a universal curve, indicating that the deformation
profile becomes approximately independent of the initial conditions, and instead only depends
on the current bubble front position R (as well as the flow rate and the material parameters). We
calculate an ad-hoc approximation of this profile by seeking quasisteady solutions of the governing
equations: we neglect the time derivative ḣ in the lubrication equation (6) and fix the position of
the bubble front R instead of evolving it using Eq. (7a). Thus, we solve the remaining governing
equations from Eqs. (1)–(9) together with

0 = ∇ · (b3∇p) in r > R, where R is fixed. (18)

The resulting deformation profiles at given values of R [dashed curves in Fig. 5(c)] are in excellent
agreement with those obtained from the time-evolving simulation, provided that we impose the
same bubble pressure pb, rather than the same flow rate Q.

In this quasisteady model, any one of Q, pb, and bmin can be treated as the control parameter.
We have chosen to perform the quasisteady calculations for a range of values of the bubble front
position R and total pressure drop across the liquid region (or, equivalently, the bubble pressure
pb) rather than Q to avoid the issue of multiple solution branches existing for Q just below the
maximum value. Fig. 7 shows how the scaled flow rate Q/Rout in the quasisteady solutions depends
on pb, bmin, and R. For each value of R, we see in Fig. 7(a) that increasing pb initially drives more
flow Q, but due to the bulge constricting the channel, Q reaches a maximum and then remains near
the maximum as pb increases further. We also plot the relationship between bmin and Q [Fig. 7(b)],
and find similarly that a decrease in bmin from 1 initially corresponds to an increase in Q, but once
the same maximum in Q is reached, the flow rate remains near it as bmin decreases further.
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FIG. 8. Simulations in the near-choking regime, for Rout = 20 and three values of the nominal injection
flow rate Q0 above the single-phase choking threshold: Evolution of the (a) resulting flow rate Q, (b) bubble
pressure pb, and (c) minimum cell gap bmin as functions of the bubble radius R, and (d) of R as function of
t . The simulations assume gas compressibility (pa = 1000) and two injection methods (syringe pump with
Vinit = R2

out/2 or pressurized bottle with Vinit = R2
init/2, shown with solid and dashed curves, respectively), but

no surface-tension effects (	 = H = C = 0). In (a), the choking threshold for the single-phase flow and results
from the quasisteady analysis [Fig. 7(c)] are shown for comparison.

We can compare these computations to the results shown in Fig. 5(c), in which the flow rate
is Q0 = 1.45Rout. For each value of R plotted in Fig. 7(a), we extract the corresponding values
of pb from the time-evolving simulation in Fig. 5(c) and mark them with crosses in Fig. 7(a).
This comparison reveals a small but noticeable difference between the flow rate predicted by
the quasisteady solution and the flow rate obtained in the time-evolving simulations, despite the
excellent agreement in deformation profiles observed in Fig. 5(c).

As described by Box et al. [16], in the single-phase case, the occurrence of choking in
time-evolving simulations with an imposed flow rate Q0 is linked to the lack of existence of a
steady state with flow rate Q = Q0. Analogously, for each value of R we can identify the largest
flow rate Q for which a quasisteady solution exists. The resulting curve [Fig. 7(c)] represents an
approximate boundary, beyond which the large flow rate in the channel is unsustainable and the
system is expected to choke. When evolving from an initially undeformed state, which corresponds
to Rout − R decreasing as the bubble grows, the system thus avoids choking if the bubble manages to
cross the boundary shown in Fig. 7(c) before the bulge has had time to grow and make contact with
the opposite wall. For example, the boundary for Q/Rout = 1.45 is at Rout − R ≈ 6, i.e., R ≈ 14,
and indeed as seen in Fig. 6(b) where this boundary is indicated by the vertical dash-dotted line, in
the cases where the cell choked, it did so before the bubble reached R ≈ 14, while if the bubble did
reach R ≈ 14 then it went on to escape without the cell choking.

The dash-dotted curves in Fig. 7 show the results of the quasisteady calculations for a two-
dimensional cell, in which Q/Rout corresponds to the flow rate per unit length in the third, Cartesian,
dimension. The two-dimensional results agree well with the radial results, especially for small
Rout − R, since the dynamics are limited to the region near the rim where the difference between
radial and two-dimensional geometry is small. Hence, the results in Fig. 7 are expected to apply for
other cell sizes Rout � 1, not just the value Rout = 20 considered here.

B. The near-choking regime for compressible gas

We now investigate the impact of gas compression on choking, by considering injection with
nominal flow rates Q0/Rout = 1.5, 2, 3 and an atmospheric pressure parameter of pa = 1000. To aid
the discussion, we plot the flow rate Q, bubble pressure pb and minimum cell gap bmin as functions
of the interface position R in Figs. 8(a)–8(c).
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As evident from Fig. 8(a), the flow rate can transiently exceed the critical value for the single-
phase flow Q(t ) ≈ 1.4Rout [horizontal dotted line in Fig. 8(a)] at early times. However, once the
bulge has grown large enough to significantly constrict the gap [see also Fig. 8(c)], the flow rate
rapidly drops to this critical value. The mismatch between the larger flow rate Q0 of gas injection
and the smaller flow rate Q(t ) of liquid exiting the cell is accommodated by volumetric compression
of the gas, which causes the gas pressure to increase continually. This in turn reduces the cell gap
further [Figs. 8(b) and 8(c)]. Nevertheless, the flow rate does not change significantly, consistent
with Q reaching a plateau as pb → ∞ or bmin → 0 in the quasisteady solutions in Figs. 7(a) and
7(b). As the bubble approaches the rim, the maximum sustainable flow rate increases [Fig. 7(c)]
and the flow rate follows this increase [dash-dotted curve in Fig. 8(a)]. [For Q0 just above the
single-phase choking threshold, such as Q0 = 30 in Fig. 8(a), the flow rate stops increasing as the
bubble decompresses before escaping the cell, but for larger Q0 the pent up pressure allows the flow
rate Q(t ), and the bubble velocity Ṙ(t ), to diverge in this model as R → Rout, as discussed at the end
of Sec. III C.]

We conclude that for nominal flow rates above the choking threshold, gas compression enables
the system to enter a “near-choking” regime after the initial transient. In this regime, the flow rate
follows the threshold curve in Fig. 7(c), which is a function of the bubble front position R, but does
not depend on the injection flow rate. A consequence of this is that the simulations with different Q0

and different injection mechanisms all have approximately the same flow rate Q(t ) during the main
part of the simulation, and hence the time evolution of the bubble radius R(t ) is approximately the
same between all of them [Fig. 8(d)].

We note that compression plays an important role despite the large value of pa = 1000 (for which
compressive effects were weak in Fig. 4). Indeed, in the absence of compression, the flow rate
Q(t ) = Q0 would be sufficiently large for the cell to choke; the minimum cell gap would decrease
from its initial value bmin = 1 toward zero, becoming arbitrarily small in finite time [Fig. 5(a)].
However, as the minimum gap narrows, the viscous resistance (both to flow through the narrow gap
and to further reduction of the gap) requires the pressure in the bubble to increase without bound
if the flow rate Q0 is to be sustained. As a consequence, no matter how small the compressibility
of the gas is, it must compress, which reduces the flow rate Q(t ), so that the cell does not choke.
Therefore, given that a real gas is never perfectly incompressible, one would expect no choking to
occur in experiments. We discuss this apparent contradiction further in Sec. VI.

V. THE DYNAMICS OF THE ADVANCING BUBBLE FRONT

It is possible to elaborate on the dynamics of the advancing bubble front under the assumption
that R � 1 and Rout − R � 1, i.e., the bubble and liquid regions have horizontal extents that are
large compared with the solid thickness. The elastic equations for the solid in those regions can then
be approximated by the long-wave result (17) which yields w ≈ 0 in both the liquid region [16] and
the bubble region. However, the approximation does not apply near the cell rim or near the bubble
front, where the horizontal length scale of variation becomes comparable to the solid thickness.
Since in this asymptotic regime the bubble is far away from the rim, the deformation near the rim is
well described by the single-phase local boundary-layer solution calculated by Box et al. [16]. Here
we study the local behavior near the bubble front using a traveling-wave approximation.

A. Traveling-wave equations

We define a local co-moving coordinate x = r − R(t ) which is assumed to be O(1). Substi-
tuting into the elastic equations (1) and neglecting quantities of order R−1 � 1, we obtain the
two-dimensional equations

σ s
xx = −ps + 2∂xus

x, σ s
zz = −ps + 2∂zu

s
z, σ s

xz = σ s
zx = ∂zu

s
x + ∂xus

z, (19a)

∂xus
x + ∂zu

s
z = 0, 0 = ∂xσ

s
xx + ∂zσ

s
zx = ∂xσ

s
xz + ∂zσ

s
zz. (19b)
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Under the traveling-wave approximation that the deformation profile is steadily translating with the
bubble front R(t ), i.e., ẇ ≈ −Ṙw′, where prime denotes a derivative with respect to x, the lubrication
equation (6) can be integrated to

−Ṙ w = (1 + w)3 p′ + q in x > 0, (20)

where q is a constant of integration. Equation (5) for the bubble pressure remains as p = pb(t ) in
x < 0, and the bubble-front conditions (7a) become

[1 − f1(CṘ)]Ṙ = −b2 p′, p − pb = −2	

b
[1 + f2(CṘ)] at x = 0+, (21)

while the conditions on the top and bottom surface of the elastic solid remain as

us|z=1 = 0, w = us
z

∣∣
z=0, p = −σ s

zz

∣∣
z=0, 0 = σ s

xz

∣∣
z=0. (22)

This is a local analysis near r = R, so the injection and rim conditions (9)–(11) are irrelevant. Instead
we match to the long-wave structure (17) at large ±x, by imposing

w, us
z → 0 as x → ±∞, us

x → 0 as x → −∞, us
x → 1 − z2

2
q as x → ∞, (23)

where we identify q = − limx→∞ p′ to be the far-field flux or negative pressure gradient. Since the
value of pb simply changes p by a constant, we only need to solve the equations above for pb = 0.

Solving these equations determines the unknown advancement velocity Ṙ of the bubble, which
depends on the nondimensional surface-tension parameters 	 and C and the far-field flux q.
However, for convenience, we instead proceed by imposing the value of Ṙ and solving the equa-
tions numerically (using Newton iteration) to obtain q as a function of Ṙ. Another important quantity
is the effective additional pressure drop in the local region (as compared with an undeformed cell,
in which the pressure gradient would be a constant q, with no capillary pressure drop),


p = pb − lim
x→∞ (p + q x). (24)

This is also calculated numerically as a function of Ṙ.

B. No residual films

We first consider the case when no residual films are deposited on the walls behind the advancing
bubble front, which corresponds to C = 0. In this case, combining the traveling-wave lubrication
equation (20) with the kinematic boundary condition (21) yields the relationship

q = Ṙ, (25)

meaning that the steady advancement velocity of the bubble must be equal to the depth-averaged
lubrication velocity far ahead of the bubble, since liquid volume is conserved.

Channel height profiles for various values of Ṙ are plotted in Fig. 9(a) for the case of no surface
tension. As was discussed in Sec. III B, an advancing bubble is associated with a liquid pressure
gradient in x > 0 that squeezes the solid away from the bubble and dilates the gap. Results are also
included for retreating bubbles (Ṙ < 0), in which case the elastic solid is squeezed toward the bubble
and constricts the gap. As Ṙ decreases toward a critical value just below −5, the minimum cell gap
shrinks toward zero, and no solutions are found for lower values of Ṙ, indicating an alternative
mechanism for choking, in which liquid displacing gas at sufficiently large flow rate causes the
elastic solid to make contact with the opposite wall near the moving interface (rather than near the
rim of the cell).

Adding in a static capillary pressure drop 	 = 1 across the bubble front [Fig. 9(b)] results in a
relative constriction of the gap ahead of the bubble front and a dilation behind the bubble front, as
discussed in Sec. III B
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FIG. 9. Numerically calculated traveling-wave solutions with no residual films (C = 0). (a), (b) Cell gap
profiles for various bubble advancement velocities Ṙ and two values of the surface-tension parameter 	. The
location x = 0 of the bubble front is indicated with a vertical dotted line. (c) The local additional pressure drop
as a function of velocity Ṙ for three values of 	.

The local additional pressure drop in the traveling-wave region is plotted in Fig. 9(c) as a function
of the bubble front velocity Ṙ for various values of the surface-tension parameter 	. (It is possible
to generalize the definition of 	 to include cases of partial wetting with a contact angle θc, for
which 	 is modified by a factor cos θc and can therefore be negative.) For the static case Ṙ = 0,
the additional pressure drop is simply given by the static formula 
p = 2	 (the static deformation
profile is an odd function of x, so b = 1 at the bubble front). For Ṙ > 0, the gap expands and the
viscous pressure drop reduces, resulting in a smaller 
p. Similarly, for Ṙ < 0, the gap constricts
and the viscous pressure drop increases, but due to the reversed flow direction we again obtain a
smaller 
p.

C. With residual films

We now consider the case of nonzero C, representing the deposition of thin liquid films on the
cell walls behind the advancing bubble front. Combining Eq. (20) with Eq. (21) now yields a more
complicated relationship between the far-field flux q and the advancement velocity Ṙ, which we can
express in terms of the total thickness m of films deposited on the walls as

q = (1 − m)Ṙ, m = f1(CṘ)b|x=0. (26)

Examples of resulting channel height profiles are plotted in Figs. 10(a)–10(c), with the thin
curves in the bubble region x < 0 showing the residual liquid films of thickness m/2 coating each
wall. As Ṙ increases, both the film correction factor f1(CṘ) and the cell gap b|x=0 increase, which
results in the residual film thickness m increasing and the ratio q/Ṙ decreasing. For small and
moderately large Ṙ, for which m is not too close to 1, the bubble continues to push a significant
amount of liquid ahead of it, with the far-field flux being q = O(Ṙ) [Fig. 10(d)]. However, as m
approaches 1, the bubble transitions to “peeling” the two walls apart while leaving the fluid mostly
in place as two thick films coating the walls [Fig. 10(c)]. This allows the advancement velocity
to become much larger than the far-field flux [Fig. 10(e)]. (In practice, for large Ṙ, rather than
settling into a steadily translating state, the system might exhibit unsteady dynamics such as repeated
pinch-off of bubbles as the residual films make contact and reconnect, and become more susceptible
to instability in the third dimension.)

In Fig. 10(f) we plot the local additional pressure drop as a function of Ṙ. For the same value of
Ṙ, the flow rate q is lower [Eq. (26)] compared with the case without films [Eq. (25)], and hence
the effect of the deformation of the cell on the pressure drop is also reduced. Therefore, for the
same value of Ṙ, the magnitude of the local additional pressure drop can be significantly smaller in

094005-16



AXISYMMETRIC GAS–LIQUID DISPLACEMENT FLOW …

FIG. 10. Numerically calculated traveling-wave solutions for an advancing bubble front that leaves behind
liquid films on the cell walls. Top row: Deformation profiles (thick lines) and residual film thicknesses (thin
lines) for C = 1, 	 = 0.01, and three values of the front velocity: (a) Ṙ = 1, (b) Ṙ = 10, and (c) Ṙ = 100.
Bottom row: The (d), (e) far-field flux q and (f) local additional pressure drop 
p as functions of Ṙ for three
different values of (C, 	) corresponding to a dimensional ratio b0/d = 0.12. In panels (d), (e), the result (25)
for C = 0 (and any value of 	) is shown (dashed line) for reference.

the case with films compared to the case without films [compare Fig. 10(f) with Fig. 9(c) at, e.g.,
Ṙ = 10].

D. Comparison with numerical simulations

To apply the traveling-wave analysis to the time-evolving problem, we combine it with the long-
wave approximation in the liquid region and the local single-phase bulge solution near the rim. In
the long-wave liquid region, we have w = 0 and hence, by conservation of volume, ∇2

H p = 0. This
results in

p = Q ln
Rout

r
+ 
pbulge(Q/Rout ), (27)

where the additional pressure drop 
pbulge near the rim due to the bulging is a function of the local
flux Q/Rout and can be extracted from the local two-dimensional solutions of Box et al. [16]. From
this, we can deduce the value of the matching quantity q = qfront (Ṙ), and express the bubble pressure
in terms of the matching quantity 
p = 
pfront (Ṙ),

qfront (Ṙ) = Q

R
, pb = Q ln

(
Rout

R

)
+ 
pbulge(Q/Rout ) + 
pfront (Ṙ). (28)

For imposed Q = Q0 and a known initial value of R, the first equation in Eq. (28) can be integrated
numerically to yield the evolution of R. For the case of compressible gas injection [Eqs. (11)], or
other methods of injection that depend on pb, the evolution of R is obtained by solving Eq. (28)
coupled to the injection condition.

We compare results from the traveling-wave analysis with results from a time-evolving simula-
tion, focusing on a case with no gas compression, moderate effects of surface tension and thin films
(	 = 0.1, H = 0.01π/4 and C = 1/12, corresponding to a dimensional ratio b0/d = 0.1), and three
different values of the cell radius, Rout = 5, 10, 20 (Fig. 11). Figure 11(a) shows the velocity Ṙ of the
bubble front, as a function of its position R, comparing the values obtained in the simulations (solid
curves) to the predictions from the traveling-wave analysis (dashed curves). As expected, there is
good agreement between the two for Rout = 20 and intermediate values of R, when the bubble front
is far away from the center and the rim of the cell so that the long-wave approximation holds. For
the smaller values of Rout, the bubble cannot be as far away from both regions of the cell, so the
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FIG. 11. Application of traveling-wave results to the time-evolving problem, with three values of Q0 =
Rout, no gas compression and 	 = 0.1, H = 0.01π/4, C = 1/12. The evolution of the bubble (a) front velocity
Ṙ and (b) pressure pb, as a function of its position R, obtained in the simulations and using the traveling-wave
approximation (28). The results Ṙ = Q0/R and pb = Q0 ln(Rout/R) for a bubble without surface tension in a
rigid cell are also shown. (c) The imposed flow rate of liquid exiting the cell and the flow rate inferred by
applying the traveling-wave analysis to the R = R(t ) data from the simulations.

agreement is worse. For comparison, the dotted curves show the prediction without residual films
[Eq. (25)], i.e., qfront (Ṙ) = Ṙ, which is noticeably different. Fig. 11(b) shows the bubble pressure pb

as a function of R. Once again, the agreement between simulations and predictions is the best for
large Rout.

The traveling-wave results can also be used to infer the flow rate Q = qfront (Ṙ) R from the
evolution of R(t ). Figure 11(c) shows the results (dashed curves) when applied to the data from
the simulations in Figs. 11(a) and 11(b). The best agreement with the true value of Q (solid lines) is
obtained for large Rout, as expected.

VI. DISCUSSION

We have presented and analysed an axisymmetric model for injection of a gas bubble into
a liquid-filled elastic-walled Hele-Shaw cell bounded by a confined incompressible elastic solid
(Fig. 1). For injection of the same viscous liquid rather than gas, the cell is known to choke for flow
rates exceeding a critical value. This choking occurs because the pressure gradient of the viscous
flow squeezes the elastic solid toward the rim, where it bulges into the channel and makes contact
with the opposite wall [16].

We have identified two mechanisms by which injection of a gas bubble instead of viscous liquid
reduces the tendency of the cell to choke. First, for a given flow rate, the proximity of the inviscid
bubble to the cell rim reduces the size of the liquid region over which the cell is being squeezed
toward the rim by the viscous pressure gradient. Using a quasisteady analysis, we have obtained an
approximation for the increased choking threshold as a function of the distance from the bubble to
the rim [Fig. 7(c)]. (The surface tension of the bubble can counteract this effect slightly, due to the
capillary pressure drop causing a constriction of the cell ahead of the bubble, which warrants further
investigation.) Second, compression of the gas reduces the flow rate of the liquid, and since choking
requires the pressure to diverge, choking with a compressible gas is not possible. Instead, the gas
compresses to keep the flow rate below the choking threshold, resulting in a near-choking behavior
in which the liquid flow rate closely follows the bubble-position-dependent theoretical threshold
regardless of the nominal injection rate of the gas [Fig. 8(a)].

The near-choking regime is similar to phenomena observed in other FSI problems. For example,
when a fluid is driven through a confined, deformable porous medium, the imposed pressure gradient
squashes the medium against the outlet, which reduces the permeability and ultimately restricts the
outflow, i.e., the fluid flux reaches an upper bound and becomes insensitive to further changes of the
pressure head [20]. Flow saturation also occurs for inertial flow of a viscous fluid in finite-length
elastic tubes: the increasing pressure head reduces the cross-sectional area of the tube leading to
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increase in the local fluid velocity, which in turn reduces the internal fluid pressure via the Bernoulli
effect and causes further constriction of the tube [40]. Inherently, all of these mechanisms rely on
interactions between a flow and an elastic structure, though the details of the FSI are different to the
ones considered here.

The study of choking involves the cell gap shrinking to zero. However, our model is formally not
valid once the gap becomes too small, as other effects become important, such as adhesion forces
between the walls, small-scale roughness of the surfaces, deviations from perfect axisymmetry,
and (eventually) the breakdown of the continuum approximation. All of these effects are likely to
promote choking by locally enabling initial contact between the walls in isolated azimuthal regions
without incurring a divergent pressure. Hence, for example in the near-choking regime, although
our model always predicts a very small but nonzero cell gap, in actuality the walls can make contact
with each other and choke the flow. This presumably also explains why choking is readily observed
in the experiments of Box et al. [16] and Peng et al. [22].

When the radius of the elastic solid is very large compared with its thickness, long-wave
approximations can be applied in the bubble and liquid regions. We have shown that in this regime
the elastic cell behaves like a rigid cell, but with modified kinematic and dynamic conditions at
the advancing bubble front due to the deformation near the front, and a modified outlet pressure
condition due to the bulging near the rim (Sec. V). Although we have assumed axisymmetry in
the present study, these approximations readily extend to nonaxisymmetric flows. As a result, the
viscous-fingering instability in the elastic-walled cell can be simulated using a standard Hele-Shaw
solver for a rigid cell but with modified boundary conditions. Another application for the modified
kinematic conditions at the bubble front is to infer the local flux, and hence the global flow rate,
from nonaxisymmetric experimental data for the position of the bubble front, as was done by Peng
et al. [22].

In their experiments performed at larger values of Q0, Peng et al. [22] suggested that com-
pressibility of the elastic solid will begin to play a role in the problem as the injection pressure
approaches a nonnegligible fraction of the bulk modulus of the elastomer. It is straightforward to
adapt the present model to account for solid compression, which introduces another nondimensional
parameter in the form of Poisson’s ratio ν. However, analysis of the model becomes more difficult,
as the long-wave approximation is significantly more complicated [39] and the traveling-wave
solutions depend on both ν and the bubble pressure pb.

The data that support the findings of this study are available on request.
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APPENDIX: NUMERICAL METHOD

We have implemented a finite-difference scheme in Matlab, making use of its built-in routines
for LU factorization and sparse matrix solution. The solid domain 0 � r � Rout, 0 � z � 1 is
discretized using a grid with an initially uniform spacing of 0.02. The radial grid is adapted
nonuniformly as required to keep the grid spacing below 2% of the estimated local length scale,
and the vertical grid is also refined near the surface to keep the smallest grid cells nearly square.

The solid displacements us
r and us

z are measured at the midpoint of the horizontal and vertical
cell boundaries, respectively, and the solid pressure ps is measured at the midpoint of each cell. The
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associated equations for us
r , us

z and ps are

−∂r ps +
[
∂2

r + 1

r
∂r − 1

r2
+ ∂2

z

]
us

r = 0, −∂z ps +
[
∂2

r + 1

r
∂r + ∂2

z

]
us

z = 0,

[
∂r + 1

r

]
us

r + ∂zu
s
z = 0, (A1)

which are evaluated using second-order finite differences. The singularity in the solid equations at
(r, z) = (R, 0), due to the discontinuity 
p in the cell pressure p at r = R, is treated analytically in
a small neighborhood of the bubble front by subtracting a two-dimensional leading-order solution,

us
x = −
p

z[1 + ln(x2 + z2)]

4π
, us

z = −
p
x[1 − ln(x2 + z2)]

4π
, ps = 
p

π − 2 arctan(x/z)

2π
,

(A2)

where x = r − R, which yields additional terms that are proportional to 
p in the equations.
We define an integrated surface displacement ψ , measured on the radial cell boundaries, with

the associated equation ψ = ∫ Rout

r wr dr. This allows the equations (6) for the gas and liquid to be
written as

p = pb in r < R, r ∂r p = −Q + ψ̇

b3
in R < r < Rout, (A3)

which we take to be the equations associated with the variable p.
The time derivative is discretized implicitly as ψ̇ = (ψ − ψ |prev)/
t , and Ṙ = (R − Rprev)/
t ,

in which ψ |prev and Rprev are the known values from the previous time step, while all other unknowns
are to be determined at the current time step. The temporal step size 
t is adapted to keep the
relative change in one time step of key quantities such as R and bmin around 0.5%. The resulting
large nonlinear system of equations is solved using Newton iteration (using the previous values
as starting guess), with a decomposition into linear and nonlinear parts to increase efficiency, as
follows.

We collect the values of us
r , us

z, ps, and ψ in a solution vector XL, while the values of p and other
individual quantities such as R, Ṙ, Q, pb, b|r=R, and 
p are collected in XN . The complete set of
discretized equations to be solved can then be represented as FL(XL, XN ) = 0 and FN (XL, XN ) = 0,
for the equations associated with XL and XN , respectively. Given a guess (XL, XN )i for the solution
vectors, the residuals FL,N and the Hessian are calculated, and an equation(

FL

FN

)
+

(
ALL ALN

ANL ANN

)[(
XL

XN

)
i+1

−
(

XL

XN

)
i

]
= 0 (A4)

for the next iteration is obtained. Here, due to the decomposition into L and N parts, the largest
matrix, ALL, is a constant, so its LU factorization can be precomputed and stored (every time
the grid is altered), which allows the product of A−1

LL with vectors to be calculated efficiently. We
then eliminate XL from the equations and obtain an expression for XN which requires no matrix
inversions apart from the precomputed A−1

LL and the solution of a matrix equation of approximate
size Nr (the number of radial grid points). Although this matrix equation is dense, it is much faster
to solve than the original sparse matrix equation of approximate size 3NrNz (where Nz is the number
of vertical grid points).
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