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When one fluid displaces another in a confined environment, some energy is dissipated in the fluid bulk
and the rest is dissipated near the contact line. Here we study the relative strengths of these two sources of
dissipation with a novel experimental setup: constant-rate spontaneous imbibition experiments, achieved
by introducing a viscous oil slug in front of the invading fluid inside a capillary tube. We show that a large
fraction of dissipation can take place near the contact line, and rationalize the observations by means of a
theoretical analysis of the dynamic contact angles of the front and back menisci of the oil slug. Our results
bear important implications for macroscopic descriptions of multiphase flows in microfluidic systems and
porous media.
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Many of our daily experiences involve one fluid dis-
placing another on a solid surface: from cooking oil
spreading on a frying pan to paper absorbing ink [1,2]
and tea flowing up a biscuit [3]. In all of these examples,
capillarity drives the flow as energy dissipates within the
fluid bulk and near the contact line (the intersection of the
fluid-fluid interface with the solid surface). While dissipa-
tion in the fluid bulk is purely viscous, dissipation near
the contact line is not yet fully understood [4–14].
Characterizing what fraction of energy is lost in each
region is a nontrivial task; the dynamics of contact lines
remains in many respects unresolved and continues to
challenge our descriptions of multiphase flow [4,5,10,15].
In this work, we unambiguously separate contact-line

and bulk dissipation and map out their relative importance
in a simple fluid-fluid displacement system. This is
challenging since the dynamics of moving contact lines
is nonlinear and rate dependent: the macroscopic contact
angle θ at which the fluid-fluid interface meets the solid
surface changes with the rate of displacement, and dis-
sipation at the contact line, in turn, changes with θ [16]. The
dynamics of moving contact lines has traditionally been
studied through two classes of experiments: (i) constant-
rate displacement under an external force (e.g., dip coating
[17,18], forced displacement in capillary tubes [19,20]) and
(ii) spontaneous, variable-rate displacement (e.g., spread-
ing of a droplet on a solid surface [21,22], imbibition of a
liquid into a capillary tube [23–29]).
Here, we present an alternative experimental setup whose

novelty is the result of combining, for the first time, three key
ingredients: (i) moving contact lines, (ii) a confined geometry,
and (iii) spontaneous, constant-rate interfacial motion.
Although the dynamics of the moving contact lines was

first properly described by Voinov [30] and Cox [31], most
studies have focused on unconfined configurations such as
spreading of liquid drops on solid surfaces [5,15,32].
Confinement increases the ratio of the interfacial area
(solid-fluid and fluid-fluid) to bulk volume, often by orders
of magnitude, which raises a fundamental question about the
balance among different dissipation sources. While many
studies have analyzed the importance of the different con-
tributions to energy dissipation in the context of spontaneous
imbibition of a liquid displacing air, as described by the
Lucas-Washburn law [1,33], bulk viscous dissipation domi-
nates except at early times [34]. What sets our experimental
setup apart from previous studies is that it allows us to
achieve constant-rate imbibition, and therefore keep the ratio
of the different dissipation contributions fixed throughout
each experiment. This allows us to unambiguously extract the
sources of dissipation in the different regimes and construct a
phase diagram describing the ratio of the energy that is
dissipated at the contact line.
Our experimental setup is built upon the classical case of

spontaneous imbibition into a capillary tube. By exposing
one end of a horizontal capillary tube to a silicone oil
reservoir, oil spontaneously wets the capillary [“classical
imbibition,” Fig. 1(a)]. The position of the oil front (z)
mostly follows Washburn’s scaling (z ∼ t1=2) [33]. The
mechanism behind the slowing of the liquid front is well
understood: the capillary driving force remains nearly
constant, while viscous resistance increases in proportion
to z. We modify this setup to achieve constant-rate
spontaneous imbibition by restricting the viscous resistance
to an oil slug of fixed length [“constant-rate imbibition,”
Fig. 1(b)]. We place a silicone oil (Sigma-Aldrich) slug of
viscosity μo and length l into a hydrophilic glass tube
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(untreated Hilgenberg GmbH borosilicate glass 3.3), and
then expose the end with the slug to a reservoir of water
with viscosity μw. The bulk viscous resistance is then
proportional to μolþ μwz; when μol ≫ μwz, the slug moves
at a constant rate that can be controlled by tuning l and/or
μo. In our experiments, the length of the oil slug does not
change as water penetrates the tube, which implies that the
oil slug does not leave a film of oil behind [35–37]. We
include further experimental details in the Supplemental
Material [38].
In contrast with classical imbibition, the oil slug in our

experiments has two menisci: one at the front (oil-air) and
one at the back (water-oil) [Fig. 1(b)]. The contact angles of
these two menisci are expected to change with the contact-
line speed, and we use the term “dynamic contact angle” for
angles at nonzero speeds. We denote the dynamic contact
angles of the back and front menisci as θb and θf, and
their respective static-advancing values as θb;a and θf;a.
Each individual experiment has a fixed speed and thus
fixed dynamic contact angles. To probe the dynamics of
the system at different spontaneous contact-line speeds, we

span a wide range of slug viscosities and lengths, with μo ∈
f48; 485; 970g mPa s and l ∈ ½2; 14# mm. We characterize
the nominal ratio of viscous to capillary forces in each
experiment through the capillary number Ca≡ ðμo _z=γoÞ,
where _z is the slug speed and γo the surface tension of the
oil. We plot Ca against the ratio of tube radius R to slug
length l in Fig. 2(a), where 44 constant-rate imbibition
experiments collapse onto a single curve. While each
individual experiment is constant rate, the nonlinear global
trend emerges from the dynamics near the contact lines. We
begin to rationalize this trend through force balance.
Constant-rate imbibition is governed by the balance of

bulk viscous resisting force (Fbulk) and capillary driving
force (Fcap). The bulk viscous force can be calculated from
the drag on the tube walls by assuming classical
Poiseuille flow (see Supplemental Material [38]) as
Fbulk ¼ 2πR½lð4μo=RÞ þ zð4μw=RÞ#_z. Since ðμwz=μolÞ ∈
½0.001; 0.2# in our experiments, we neglect the viscous
pressure drop within the water phase and the expression for
Fbulk reduces to

Fbulk ¼ 8πμol_z: ð1Þ

The capillary driving force can be expressed through the
dynamic contact angles of the back and front menisci:

Fcap ¼ 2πRðγow cos θb þ γo cos θfÞ; ð2Þ

where γow is the oil-water interfacial tension. For quasi-
static displacement in the absence of gravity, Fcap and Fbulk
must balance to yield the speed of the oil slug,
_z ¼ ðR=4μolÞðγow cos θb þ γo cos θfÞ, which in dimension-
less form reads

Ca ¼
!
γow
γo

cos θb þ cos θf

"
R
4l
: ð3Þ

To fully resolve Eq. (3), we need to know how θb and θf
evolve with Ca [4,5,15]. When the solid surface is perfectly

(a) (b)

FIG. 1. Experimental snapshots of (a) the classical spontaneous
imbibition (z ∼ t1=2) of 50 cSt silicone oil in a capillary tube and
(b) constant-rate spontaneous imbibition (z ∼ t) of water with a
50 cSt silicone oil slug precursor.

FIG. 2. (a) Constant-rate imbibition experiments for μo ∈ f48; 485; 970g mPa s and l ∈ ½2; 14# mm. Solid lines are theoretical
predictions of constant-rate imbibition after accounting for dissipation sources within the oil slug. The experimental data is captured
accurately by Eq. (5) [or equivalently Eq. (6)]. (b) Measurements of θf (blue diamonds) and θb (green squares) during constant-rate
imbibition were done using a microscope, with typical snapshots for slugs of different lengths (and thus Ca) displayed beside the figure.
The solid lines show the generalized Cox relation [31] with Γ ¼ 6.9, and purple triangles indicate the data from Hoffman [19]. The blue
shaded region indicates the range of Ca in our constant-rate imbibition experiments.
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smooth and homogeneous, both angles are expected to follow
the generalized Cox equation [31], which can be written as

gðθ;MÞ − gðθa;MÞ ¼ CaΓ; ð4Þ

where Γ ¼ lnðR=hmicroÞ, hmicro is the microscopic cutoff
length near the contact line,M is the ratio of the defending to
invading fluid viscosities, and the function gðθ;MÞ is defined
in the Supplemental Material [38]. Indeed, when using M ¼
0 for the oil-air interface, M ¼ 1000 for the water-oil
interface, and hmicro=R ¼ 10−3 (Γ ¼ 6.9) for both [31],
the generalized Cox equation produces good agreement with
our experimental measurements of θf and θb [Fig. 2(b)].
Although Eqs. (3) and (4) can be used to reproduce the
constant-rate imbibition trend in Fig. 2(a), we seek further
simplifications of Eq. (4) for the two menisci. First, we take
θb ¼ 72°. This is justified since both θb measurements and
the generalized Cox trend in Fig. 2(b) appear to be approx-
imately constant within the Ca range of our constant-rate
imbibition experiments. Second, we note that Eq. (4) sim-
plifies greatly for the oil-air meniscus: when M ≪ 1, it
reduces to the commonly used Cox-Voinov relation
θ3f ¼ θ3f;a þ 9ΓCa [30,31]. This further reduces to θf ¼
ð9ΓCaÞ1=3 since silicone oil wets the glass surface completely
(θf;a ¼ 0°). Therefore, after using the expansion cos θf ¼
1 − θ2f=2þOðθ4fÞ and the Cox-Voinov expression, Eq. (3)
yields

Ca ¼
#
γow
γo

cos θb þ 1 −
1

2
ð9ΓCaÞ2=3

$
R
4l
; ð5Þ

which accurately reproduces the experimental trend
[Fig. 2(a)]. Note that the generalized Cox relation predicts
approximately constant θb within the Ca range of our
experiments for any liquid pair as long as M ≫ 1
and θb;a ≲ 64°.
We can now use this theoretical description of constant-

rate imbibition [Eq. (5)] to evaluate the contributions of the
two moving contact lines to the macroscopic trend in
Fig. 2(a). It is important to distinguish between the two
menisci in Fig. 1(b), because wettability plays a key role in
how they interact with surface defects. The water-oil
interface is in partial wetting, and can experience pinning
at surface defects [7]; whenever θb < θb;a, interfacial forces
at the contact line are in static balance. This balance no
longer holds when θb > θb;a, and the contact line sets in
motion. We define the dynamic contact-line force at the
back meniscus as fb ¼ γowðcos θb;a − cos θbÞ. We measure
θb;a ≈ 64°, and thus fb ≈ 0.13γow. In contrast, the oil-air
interface is in complete wetting, and is not sensitive to most
surface defects [7]. We define ff ¼ γoðcos θf;a − cos θfÞ in
analogy to the water-oil meniscus. Recall that θf;a ¼ 0°.
Then, the force at the front meniscus reduces to
ff ¼ ðγo=2Þð9ΓCaÞ2=3. We can then rewrite Eq. (5)
through the dynamic contact-line forces,

4l
R
Caþ fb

γo
þ
ffðCaÞ
γo

¼ 1þ γow
γo

cos θb;a; ð6Þ

where “driving” terms are grouped on the right-hand side,
and “resisting” terms are grouped on the left-hand side.
Equation (6) is equivalent to Eq. (5), but its form is
convenient for inferring the relative importance of fb
and ff to the overall trend in Fig. 2(a). If there were
no dynamic contact-line forces at the two menisci
(ff ¼ fb ¼ 0), the equation of motion would reduce to
Eq. (3) with θb ¼ θb;a and θf ¼ θf;a. This scenario
corresponds to the red line in Fig. 2(a). If we now
remove the dynamic contact-line force at the front meniscus
only, Eq. (6) would reduce to Eq. (5) without term
ðγo=2Þð9ΓCaÞ2=3, corresponding to the black line in
Fig. 2(a). These comparisons suggest that: (i) neglecting
the dynamic contact-line forces produces a trend with a
significant qualitative and quantitative disagreement with
the experiments in Fig. 2(a), (ii) nonlinearity in constant-
rate imbibition comes from the dynamic contact-line force
at the front meniscus, (iii) the contribution of fb to the
overall trend in Fig. 2(a) is relatively small [see Eq. (6) with
fb ¼ 0 in Fig. 2(a)], with 2 < ff=fb < 8 within the Ca
range of our experiments.
Although our experiments are in spontaneous imbibition,

our results are also relevant to forced imbibition. Addition
of an external force would not change the sources of
dissipation within the moving slug. There are only three
dissipative forces in our system: bulk viscous force and
contact-line forces at the two menisci. The energy dis-
sipation in the bulk is Φbulk ¼ 8πμol_z2, again assuming
Poiseuille flow and μol ≫ μwz. The dissipation due to
dynamic contact-line forces is Φcl ¼ 2πRðff þ fbÞ_z. We
can map the relative magnitudes of Φbulk and Φcl during
arbitrary motion of the oil slug. Figure 3 shows a phase
diagram where spontaneous imbibition [Eq. (5)] separates
regions where an external force either “pushes” the slug to
move faster or “pulls” it to move slower than the sponta-
neous rate. The ratio of contact line to total dissipation
within the moving slug is Ξ ¼ Φcl=ðΦcl þΦbulkÞ, which is
equivalent to

Ξ ¼
fb þ ff

fb þ ff þ 4l
R Caγo

; ð7Þ

and can be alternatively derived by considering dissipative
forces within the system (contact line vs total). The color-
map in Fig. 3 represents different values of Ξ in Eq. (7). A
surprisingly large fraction of the dissipation (between 20%
for 14 mm slugs and 50% for 2 mm slugs) occurs in the
vicinity of the contact line in our experiments. The values
of Ξ in Fig. 3 are within the Ca range of our experiments.
However, it is important to note what would happen in the
upper and lower bounds of Ca in Fig. 3. In the upper bound
(Ca > 0.02), our approximation of constant θb would no

PHYSICAL REVIEW LETTERS 125, 174503 (2020)

174503-3



longer hold [see Fig. 2(b)]. Thus, the values of Ξ in Fig. 3
likely underestimate the true dissipation ratio when
Ca > 0.02. In the lower bound (Ca → 0), the system would
approach a depinning threshold, where the water-oil
contact line would move by hopping between surface
defects, resulting in a θbðCaÞ relation that is very different
from the generalized Cox equation [7–9]. The fact that the
motion of the water-oil meniscus in our experiments
appears to be smooth and θb is in good agreement with
the generalized Cox equation suggests that we are either
sufficiently far from the depinning threshold or that the
strength of the surface defects on our glass surface is too
small to have appreciable influence on the overall trend
in Fig. 3.
The ratio of contact line to bulk dissipation in Fig. 3 has

important macroscopic implications for problems beyond
constant-rate imbibition. Neglecting dissipation near the
contact lines would lead to erroneous (linear) relation
between dissipation and Ca; Fig. 3 demonstrates that this
relation is nonlinear and is a function of the slug dimen-
sions. One example where this may be significant is the
flow of foam or ganglia in porous media [40,41], a
system that inherently features a large number of
(potentially very short) viscous slugs and thus might be
expected to have significant energy dissipation associated
with dynamic contact-angle effects. Another example
is classical imbibition in capillary tubes. It has recently
been demonstrated that early-time viscous effects near the
contact line move the system away from the commonly
known form of the Washburn equation (z ∼ t1=2),
towards z ∼ t [34]. This is when Φbulk and Φcl are
comparable. However, this flow regime is rather brief in
classical imbibition (see Supplemental Material [38]).
Alternatively, one can readily access the flow regime
with significant Φcl contribution through constant-rate
imbibition, as we demonstrate in Fig. 3.
In summary, we have mapped out the contributions of

contact-line and bulk dissipation during fluid-fluid dis-
placement, and we have shown that a large portion of the

dissipation takes place in the vicinity of the contact line. We
did so using constant-rate spontaneous imbibition,
achieved by introducing a viscous oil slug in front of
the invading fluid inside a capillary tube. The rate of
imbibition in such experiments can be precisely controlled
through the viscosity and length of the oil slug. This setup
allows probing flow regimes that would otherwise be
accessible only during the early-time spontaneous flow
—a novel feature of our experimental setup that has
significant utility in the study of moving contact-line
problems. Alternatively, one can ensure that dynamic
contact-angle effects are negligible by making the oil slugs
sufficiently long (Ξ → 0 when l=R ≫ 1). For example, in
order for contact-line dissipation to account for less than
5% of total dissipation, a slug must be longer than l=R ¼
155 at Ca ¼ 0.02 and longer than l=R ¼ 65 at Ca ¼ 0.2.
The system we present in this work could be utilized for

fabrication of precise micro- and nanopumps. The ability to
precisely control the flow rate without external forces
would be useful in designing passive microfluidic devices
[42], which have applications in miniature heat pipes for
cooling of electronic components [43], patterning bio-
molecules in microchannels [44], and clinical diagnostics
[45]. Indeed, a known method of maintaining a fixed flow
rate in such devices is by having a constriction ahead of the
flow channel that is about an order of magnitude smaller
than the rest of the channel [46]. However, it can be
technically challenging to scale down this technique to
sizes below a micron, where one would need to precisely
fabricate nanometer-scale constrictions. The constant-rate
imbibition depicted in Fig. 1(b) does not have such scaling
limitations, and it is a cheap technique that can be used for
passive control of flow rates in microfluidic devices.

We thank Lydia Bourouiba, John W.M. Bush, Philip
M. Gschwend, and Jun Li for helpful discussions and
suggestions. This work was funded by the KFUPM-MIT
collaborative agreement “Multiscale Reservoir Science.”
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DETAILS OF THE EXPERIMENTAL SETUP9

All of the experiments were conducted in Hilgenberg borosilicate glass tubes that are10

75 mm in length and 290 µm in inner radius. The interfacial tensions of the oil–air and11

oil–water interfaces were γo = 22 mN/m and γow = 13 mN/m, respectively. The dynamic12

contact angles of the water-oil interface in glass capillaries were measured under a micro-13

scope. The tubes were submerged into glycerol, which has a matching refractive index with14

the borosilicate glass in use (1.473). Contact angles were measured from the curvature of15

the interface, with parallax correction applied as in [1].16

Throughout this manuscript we assumed that Hagen–Poiseuille flow is maintained17

through the oil slug and that, therefore, the velocity profile is parabolic. This assump-18

tion was used to calculate the viscous drag and dissipation within the bulk of the oil slug.19

We confirmed the parabolic velocity profile within the oil slug through PIV tracing [2]. In20

FIG. 1 we show that even for the shortest slug used in this study (2 mm), the majority of21

the bulk space maintains the parabolic velocity profile.22

FIG. 1. PIV measurements of the velocity profile in spontaneously moving 2 mm slug with

1000 cSt viscosity. The plot is the 2D representation of a histogram, where color stands for the

frequency. The data was collected over the entire length of the 2 mm slug, over all frames. The

figure demonstrates that even in the shortest slug used in this study (2 mm), the majority of the

bulk space maintains the parabolic velocity profile.
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GENERALIZED COX EQUATION23

In the main body of the manuscript we use the generalized Cox equation [3]24

g(θ,M) − g(θa,M) = Ca Γ, (1)25

where M is the ratio of the defending to invading fluid viscosities, Γ = ln(R/hmicro) is the26

cut-off-length parameter near the contact line, and function g(θ,M) is27

g(θ,M) =

∫ θ

0

dβ

f(β,M)
, (2)28

and29

f(β,M) =
2 sin β[M2(β2 − sin2 β) + 2M(β(π − β) + sin2 β) + (π − β)2 − sin2 β]

M(β2 − sin2 β)(π − β + sin β cos β) + ((π − β)2 − sin2 β)(β − sin β cos β)
. (3)30

CLASSICAL IMBIBITION31

FIG. 3 in the manuscript demonstrates that contact-line dissipation can be responsible32

for a significant portion of the energy loss in capillary-driven flow systems. To stress this33

point further, we return to the classical imbibition depicted in FIG. 1a of the manuscript.34

The need to account for contributions of the contact-line dynamics to the rate of classical35

imbibition has been the focus of a series of recent studies [4–8]. We plot the evolution of the36

front position z(t) for 50 cSt silicon oil in FIG. 2. The classical Washburn scaling for z(t) can37

be obtained by balancing Fbulk = 8πµozż with Fcap = 2πRγo cos θo = 2πRγo(1− 1
2
(9Γµoż

γo
)2/3)38

and neglecting the dynamic contact angle. Then the force balance reduces to39

4µo
Rγo

zż = 1. (4)40

The solution to equation (4) is z2 = γoR
2µo

t, which differs from the early-time experimental41

data in FIG. 2. A more complete description emerges by considering the dynamic contact42

angle43

4µo
Rγo

zż = 1 − 1

2
(9Γ

µoż

γo
)2/3. (5)44

Equation (5) captures the dynamics of viscosity-dominated classical imbibition at both early-45

and late-times. At early times (when z is small), Φbulk and Φcl are comparable (see FIG. 2)46

and therefore the dynamics is best described by including both dissipation sources. At late47
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0.1

0.5

2

1

FIG. 2. Evolution of z(t) during classical imbibition of 50 cSt silicon oil depicted in FIG. 1a of

the manuscript. Here the black line represents the classical Washburn solution [Eq. (4)], the red

line represents the solution corrected for dynamic contact angle [Eq. (5)]. The ratio of contact-line

to total dissipation is denoted with a colormap.

times, the liquid front slows and θo approaches θo,a, making Φcl negligible. As a result, the48

experimental z(t) approaches the z ∼ t1/2 scaling (FIG. 2).49
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[36] J. Bico and D. Quéré, J. Colloid Interface Sci. 243, 262

(2001).
[37] B. Zhao, A. A. Pahlavan, L. Cueto-Felgueroso, and R.

Juanes, Phys. Rev. Lett. 120, 084501 (2018).
[38] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.125.174503 for details
of the experimental setup, the generalized Cox equation, and
energy dissipation in classical imbibition, which includes
Ref. [39].

[39] W. Thielicke and E. J. Stamhuis, J. Open Res. Software 2,
e30 (2014).

[40] K. T. Tallakstad, H. A. Knudsen, T. Ramstad, G. Løvoll,
K. J. Måløy, R. Toussaint, and E. G. Flekkøy, Phys. Rev.
Lett. 102, 074502 (2009).

[41] K. T. Tallakstad, G. Løvoll, H. A. Knudsen, T. Ramstad, E.
G. Flekkøy, and K. J. Måløy, Phys. Rev. E 80, 036308
(2009).

[42] M. Zimmermann, H. Schmid, P. Hunziker, and E. Delam-
arche, Lab Chip 7, 119 (2007).

[43] L. L. Vasiliev, Appl. Therm. Eng. 28, 266 (2008).
[44] E. Delamarche, D. Juncker, and H. Schmid, Adv. Mater. 17,

2911 (2005).
[45] C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B.

Lee, A. Puntambekar, and J. Y. Lee, Proc. IEEE 92, 154
(2004).

[46] W. Guo, J. Hansson, and W. van der Wijngaart, Microsyst.
Nanoeng. 4, 2 (2018).

PHYSICAL REVIEW LETTERS 125, 174503 (2020)

174503-5

https://doi.org/10.1103/PhysRevLett.115.034502
https://doi.org/10.1103/PhysRevLett.113.044501
https://doi.org/10.1103/PhysRevLett.113.044501
https://doi.org/10.1017/S0022112004008663
https://doi.org/10.1103/PhysRevLett.100.234501
https://doi.org/10.1103/PhysRevLett.100.234501
https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1016/0021-9797(71)90188-3
https://doi.org/10.1016/0021-9797(71)90188-3
https://doi.org/10.1140/epjb/e2004-00037-9
https://doi.org/10.1140/epjb/e2004-00037-9
https://doi.org/10.1103/PhysRevLett.116.184502
https://doi.org/10.1016/0021-9797(75)90225-8
https://doi.org/10.1016/0021-9797(91)90020-9
https://doi.org/10.1016/0021-9797(91)90020-9
https://doi.org/10.1002/app.1994.070520308
https://doi.org/10.1002/app.1994.070520308
https://doi.org/10.1088/0022-3727/12/9/009
https://doi.org/10.1016/0021-9797(86)90318-8
https://doi.org/10.1016/0021-9797(86)90318-8
https://doi.org/10.1103/PhysRevLett.80.3069
https://doi.org/10.1103/PhysRevLett.80.3069
https://doi.org/10.1103/PhysRevE.61.5257
https://doi.org/10.1016/j.jcis.2009.04.013
https://doi.org/10.1016/j.jcis.2009.12.024
https://doi.org/10.1021/la501724y
https://doi.org/10.1021/acs.langmuir.6b00351
https://doi.org/10.1021/acs.langmuir.6b00351
https://doi.org/10.1007/BF01012963
https://doi.org/10.1017/S0022112086000332
https://doi.org/10.1103/RevModPhys.69.931
https://doi.org/10.1103/RevModPhys.69.931
https://doi.org/10.1103/PhysRev.17.273
https://doi.org/10.1039/C8SM02485E
https://doi.org/10.1017/S002211200200126X
https://doi.org/10.1006/jcis.2001.7891
https://doi.org/10.1006/jcis.2001.7891
https://doi.org/10.1103/PhysRevLett.120.084501
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.174503
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.174503
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.174503
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.174503
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.174503
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.174503
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.174503
https://doi.org/10.5334/jors.bl
https://doi.org/10.5334/jors.bl
https://doi.org/10.1103/PhysRevLett.102.074502
https://doi.org/10.1103/PhysRevLett.102.074502
https://doi.org/10.1103/PhysRevE.80.036308
https://doi.org/10.1103/PhysRevE.80.036308
https://doi.org/10.1039/B609813D
https://doi.org/10.1016/j.applthermaleng.2006.02.023
https://doi.org/10.1002/adma.200501129
https://doi.org/10.1002/adma.200501129
https://doi.org/10.1109/JPROC.2003.820548
https://doi.org/10.1109/JPROC.2003.820548
https://doi.org/10.1038/s41378-018-0002-9
https://doi.org/10.1038/s41378-018-0002-9

